Stereospecific Synthesis of the Side Chain of the Steroidal Plant Sex Hormone Oogoniol

James R. Wiersig, Nada Waespe-Sarcevic, and Carl Djerassi*
Department of Chemistry, Stanford University, Stanford, California 94305

Received December 8, 1978

Abstract

The determination of the configuration at C-24 of the revised structure of oogoniol (19), a sex hormone of the water mold Achlya, was accomplished by the stereospecific synthesis of the model compounds (24S)-stigmast-5-ene-3B,29-diol (24) and ($24 R$)-stigmast-5-ene-3B,29-diol (53) which contain the oogoniol side chain. Diols 24 and 53 were prepared from esters 23 and 46 -products of the Claisen rearrangement of ($23 E$,- and $23 Z, 22 S$)-6 β-methoxy- $3 \alpha, 5$-cyclo- 5α-cholest- 23 -en- 22 -ol (22 and 33) with trimethyl orthoacetate. Comparison of the proton NMR spectral data of 24 and 53 with those of oogoniol proved that the stereochemistry at C-24 of the revised structure of oogoniol is $24 R$, and, therefore, that oogoniol has the stereostructure 56 .

Steroidal hormones have been shown to play an important role in the sexual reproductive process of the water mold Achlya. ${ }^{1-8}$ This Oomycete genus is unique in this respect, and recent results strongly suggest that a complex hormonal control mechanism similar to those found in animal systems exists in Achlya. ${ }^{6,8-12}$ The oogoniols induce the formation of oogonia, the female sex organs, in Achlya, and they were isolated in 1975 by McMorris and coworkers, ${ }^{13}$ who proposed structures 1a-d for the closely related steroids oogoniol-1, oogoniol-2, oogoniol-3, and oogoniol.

$$
\begin{aligned}
& 1 \mathrm{a}, \mathrm{R}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC}=\mathrm{O} \\
& \mathrm{~b}, \mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O} \\
& \mathrm{c}, \mathrm{R}=\mathrm{CH}_{3} \mathrm{C}=\mathrm{O} \\
& \mathrm{~d}, \mathrm{R}=\mathrm{H}
\end{aligned}
$$

The synthetic approach decided upon in our laboratory centered on oogoniol and was divided into two parts. The first focused on the nucleus of 1d, and we have reported recently ${ }^{14}$ the synthesis of $3 \beta, 11 \alpha, 15 \beta$-trihydroxycho-lest-5-en-7-one (3), a compound containing the nuclear functionalities of oogoniol (1d) and an unsubstituted cholestane side chain, starting from 7 -dehydrocholesterol
(1) L. Machlis in "The Fungi", Vol. II, G. C. Ainsworth and A. S. Sussman, Eds., Academic Press, New York, N.Y., 1966, p 415.
(2) A. W. Barksdale, Science, 166, 831 (1969).
(3) L. Machlis, Mycologia, 64, 235 (1972).
(4) G. W. Gooday, Annu. Rev. Biochem., 43, 35 (1974)
(5) M. J. Carlile and G. W. Gooday, Cell. Surf. Rev., 5, 219 (1978).
(6) G. Kochert, Annu. Rev. Plant Physiol., 29, 461 (1978).
(7) B. A. Knights, Top. Horm. Chem., 1, 251 (1978).
(8) C. G. Elliott, Adv. Microb. Physiol., 15, 121 (1977)
(9) P. A. Horgen, Biochem. Biophys. Res. Commun., 75, 1022 (1977).
(10) W. E. Timberlake, Dev. Biol., 51, 202 (1976).
(11) R. B. Sutherland and P. A. Horgen, J. Biol. Chem., 252, 8812 (1977).
(12) B. Groner, N. Hynes, A. E. Sippel, and G. Schultz, Nature (London), 261, 599 (1976)
(13) T. C. McMorris, R. Seshadri, G. R. Weihe, G. P. Arsenault, and A. W. Barksdale, J. Am. Chem. Soc., 97, 2544 (1975). For biosynthetic studies see T. C. McMorris and R. H. White, Phytochemistry, 16, 359 (1977). Note added in proof: M. W. Preuss and T. C. McMorris, J. Am. Chem. Soc., 101, 3066 (1979), have shown that the $\Delta^{24(23)}$-dehydro analogues possess much higher biological activity.
(14) E. J. Taylor and C. Djerassi, J. Org. Chem., 42, 3571 (1977).
benzoate (2). The second part involves the construction

of the side chain which should be stereospecific so that its stereochemistry and absolute configuration-two hitherto undetermined features-could be determined. We now report a successful solution to this second problem.

In designing our synthesis of the oogoniol side chain, we wanted to be able to stereospecifically synthesize all of the possible configurations in the side chain. Comparison of the proton and/or carbon nuclear magnetic resonance spectra of the synthetic models with the spectra of the authentic natural product would then permit determination of the configurations at $\mathrm{C}-24$ and $\mathrm{C}-25$. The Claisen rearrangement has proven to be an excellent method of introducing functionalities in a stereospecific and regiospecific manner, ${ }^{15-17}$ and Sucrow et al. ${ }^{18-22}$ have investigated its specific applicability to steroidal side chain allylic alcohols. Our general plan was to synthesize a suitable allylic alcohol (e.g., 5) and expose it to triethyl orthopropionate (6) to yield a Claisen product (7), which could then easily be converted to the $24 R, 25 S$ epimer 8 of the oogoniol side chain.

The starting material chosen for our synthesis (Scheme I) was the aldehyde 11 , which is readily available from stigmasterol (9) via its iso-methyl ether $10 .{ }^{23,24}$ Treatment

[^0]
with 1-butynylmagnesium bromide gave a 1:1 mixture of the ($22 R$)- (12) and (22S)- (13) 6β-methoxy- $3 \alpha, 5$-cyclo27 -nor- 5α-cholest- 23 -yn- 22 -ols. The epimeric alcohols were easily separable by column chromatography, ${ }^{25}$ and their stereochemistry was proved by conversion to the known ${ }^{20}$ acetates 14 and 15 , whose configurations at $\mathrm{C}-22$ had been determined by Horeau analysis. Lithium aluminum hydride reduction of the acetylenic alcohols 12 and 13 gave the desired $22 S$ and $22 R$ allylic alcohols 16 and 5 with the $23 E$ stereochemistry as established by NMR analysis.

Claisen rearrangement of the individual allylic alcohols 5 and 16 using triethyl orthopropionate ${ }^{26,27}$ gave in both cases a mixture of two olefinic esters (17 and 18 , re-

spectively) which were epimeric at $\mathrm{C}-25$ and could not be separated by either thin-layer or column chromatography. Evidently both E and Z isomers of the intermediate ketene acetals are formed during the Claisen rearrangement when ethanol is lost from the mixed orthoester intermediates; consequently mixtures of C-25 epimers are formed. A description of the synthesis of 5 and 16 (Scheme I) and experimental details are available as supplementary material.

In order to achieve better stereochemical control during the Claisen rearrangement, we intended to employ Ireland's ester-enolate modification of the Claisen rearrangement. ${ }^{28}$ However, at this stage McMorris and
(23) R. F. N. Hutchins, J. J. Thompson, and J. A. Svoboda, Steroids, 15, 113 (1970).
(24) W. G. Salmond and M. C. Sobala, Tetrahedron Lett., 1695 (1977). (25) The relatively large difference in polarity between the epimeric alcohols ($12, R_{f} 0.39 ; 13, R_{f}, 0.28$ in $20 \% \mathrm{EtOAc} /$ hexane) is noteworthy. The $22 R(22 \alpha)$ alcohol 12 is the less polar epimer, which represents an inversion with respect to the usually observed polarities of epimeric pairs of 22 -alcohols (see for example: J. P. Poyser, F. R. Hirtzbach, and G. Ourisson, Tetrahedron, 30, 977 (1974); D. H. R. Barton, J. P. Poyser, and P. G. Sammes, J. Chem. Soc., Perkin Trans. 1, 53 (1974); J. P. Poyser and G. Ourisson, ibid., 2061 (1974); ref 31). This is also a reversal of the polarities observed by Sucrow ${ }^{20}$ in the 3β-acetoxy- Δ^{5} analogues 14 and 15. This reversal of behavior has previously been noted by Poyser and Ourisson, loc. cit., for the epimeric iso-methyl ethers 57 and 58. This same behavior was noted in the other epimeric pairs of C-22 alcohols which we synthesized (vide infra). Apparently this behavior is a consequence of the iso-methyl ether functionality.

57

58
(26) I. J. Bolton, R. G. Harrison, and B. Lythgoe, J. Chem. Soc. C, 2950 (1971).
(27) W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brockson, T. Li, D. J. Faulkner, and M. R. Petersen, J. Am. Chem. Soc., 92, 740 (1970).
collaborators ${ }^{29}$ revised the structure of oogoniol from 1d to 19 because the ${ }^{13} \mathrm{C}$ NMR spectrum of oogoniol resembled more closely that of the model (24ξ)-stigmast5 -ene- $3 \beta, 29$-diol (21) than that of ($24 \xi, 25 \xi$)-stigmast-5-ene-38,26-diol (20).

A stereospecific synthesis of the revised oogoniol side chain structure was still required since the C-24 stereochemistry could not be established on the basis of the reported ${ }^{13,29}$ spectral measurements. Fortunately, the same Claisen rearrangement approach used for the generation of the original ${ }^{13}$ oogoniol side chain could also be employed to produce the revised one (19). Specifically, the plan was to synthesize the allylic alcohol 22 and via Claisen re-

arrangement with trimethyl orthoacetate obtain a 28 methoxycarbonyl derivative (23) which could then easily be converted to the oogoniol side chain model 24 . The C-24 stereochemistry would be controlled simply by the stereochemistry of the Δ^{23} double bond in the starting alcohol 22.
The starting material for the synthesis (Scheme II) was the aldehyde 11, which is readily available from stigmasterol (9) via its iso-methyl ether (10). ${ }^{23,24}$ Treatment with the vinyllithium reagent 25 derived from (E)-1-iodo-3-methyl-1-butene (27) gave, after chromatography, 50% of the crystalline $22 S$ allylic alcohol 22 and 11% of the noncrystalline $22 R$ epimer 26 . The E vinyl iodide 27 was prepared from commercially available 3 -methyl-1-butyne (35) by reaction with catecholborane to give the catechol

[^1]Scheme II

25

27 $\left\lvert\, \begin{array}{ll}\text { (1) } & \mathrm{NaOH} \\ \text { (2) } & \mathrm{I}_{2}\end{array}\right.$

$+$
11

30

11

TsOH|

28

26

29
$\begin{cases}\text { (1) } \mathrm{H}_{2} / \mathrm{PrO}_{2} \\ \text { (2) } \mathrm{Ts} \mathrm{OH}\end{cases}$

32

33
34

35

37
36

ester 36, hydrolysis to the boronic acid derivative 30, and, finally, reaction with iodine in basic solution. ${ }^{30}$ The E stereochemistry of the iodide 27 as well as of the Δ^{23} double bond in 22 was established by the appropriate signals in the olefinic region of their NMR spectra (see Experimental Section). Hydrogenation of 22 followed by regeneration of the 3β-hydroxy- Δ^{5} system gave the known ${ }^{31}(22 S)-22$ hydroxycholesterol 29.

The preparation of the $23 Z, 22 S$ allylic alcohol 33 proceeded in a similar manner (Scheme II). (Z)-1-Bromo3 -methyl-1-butene (37) was also generated from the catechol ester 36 by bromination at $-40^{\circ} \mathrm{C}$ followed by addition of sodium methoxide in methanol to produce a 63:37 mixture of Z and E vinyl bromides 37 and 38 . This was an unexpected result in view of Brown's report that this procedure produces exclusively Z vinyl bromides from terminal acetylenes. ${ }^{32}$ The desired Z isomer was obtained in pure form by preparative gas chromatography. NMR

[^2]spectral data were consistent with the literature data for this compound. ${ }^{33}$
The vinyllithium reagent 31 was prepared by reaction of the Z vinyl bromide 37 with tert-butyllithium at -120 ${ }^{\circ} \mathrm{C}$ in the Trapp solvent mixture. ${ }^{34}$ Addition of the aldehyde 11 in tetrahydrofuran at $-90^{\circ} \mathrm{C}$ gave, after workup and chromatography, the $22 S$ and $22 R$ allylic alcohols 33 and 32 in 48 and 26% yield, respectively. In addition, we obtained a 12% yield of the alcohol 34 , which apparently arises by reaction of residual tert-butyllithium with the aldehyde 11. The Z stereochemistry of the Δ^{23} double bond in 33 was again demonstrated by the olefinic region of the proton NMR spectrum. Proof of the configuration at C-22 was obtained by hydrogenation of the Δ^{23} double bond followed by regeneration of the 3β-hydroxy- Δ^{5} system to yield the known ${ }^{31}(22 S)$-22-hydroxycholesterol 29.
Claisen rearrangement of the $E(22)$ and $Z(33)$ allylic alcohols with trimethyl orthoacetate in refluxing xylene gave in each case ca. 60% of a single (by TLC, GLC, and high-pressure LC) noncrystalline product, 23 and 46, respectively (Scheme III). Consideration of the mech-

[^3]

22

33

23, $\mathrm{R}^{1}=\mathrm{M}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Me}$
40, $\mathrm{R}^{1}=\mathrm{N}_{\mathrm{OH}}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}$
41, $\mathrm{R}^{1}=\mathrm{M}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}$
42, $\mathrm{R}^{1}=\mathrm{N}_{\mathrm{OH}}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}$
10, $\mathrm{R}^{1}=\mathrm{M}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
9, $\mathrm{R}^{1}=\mathrm{N}_{\mathrm{OH}}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
$43, \mathrm{R}^{1}=\mathrm{N}_{\mathrm{OAc}}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
1

24, $\mathrm{R}^{1}=\mathrm{N}_{\mathrm{OH}}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}$
$44, \mathrm{R}^{1}=\mathrm{N}_{\mathrm{OH}}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
$45, \mathrm{R}^{1}=\mathrm{N}_{\mathrm{OAC}}, \mathrm{R}^{2}=\mathrm{CH}_{3}$

53, $\mathrm{R}^{2}=\mathrm{N}_{\mathrm{OH}}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}$

46, $\mathrm{R}^{1}=\mathrm{M}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}$ 47, $\mathrm{R}^{1}=\mathrm{N} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}$
$48, \mathrm{R}^{1}=\mathrm{M}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}$
$49, \mathrm{R}^{1}=\mathrm{N}_{\mathrm{OH}}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}$
50, $\mathrm{R}^{1}=\mathrm{M}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
51, $\mathrm{R}^{1}=\mathrm{N}_{\mathrm{OH}}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
$52, \mathrm{R}^{1}=\mathrm{N}_{\mathrm{OAc}}, \mathrm{R}^{2}=\mathrm{CH}_{3}$

$54, \mathrm{R}^{1}=\mathrm{N}_{\mathrm{OH}}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
$55, \mathrm{R}^{1}=\mathrm{N}_{\mathrm{OAc}}, \mathrm{R}^{2}=\mathrm{CH}_{3}$

Table I. Methyl Group Chemical Shifts $(360 \mathrm{MHz})$ of 23 and 46^{a}

compd	$\mathrm{C}-18$	$\mathrm{C}-19$	$\mathrm{C}-21^{b}$	$\mathrm{C}-26^{c}$	$\mathrm{C}-27$
23	0.718	1.020	0.966	0.838	0.876^{c}
46	0.712	1.01 .9	0.994	0.830	0.871^{b}

${ }^{a}$ Solvent CDCl_{3}, internal standard $\mathrm{Me}_{4} \mathrm{Si} .{ }^{b}$ Doublet, $J=6.6 \mathrm{~Hz}$. ${ }^{c}$ Doublet, $J=6.8 \mathrm{~Hz}$.
anism of the Claisen rearrangement ${ }^{15-17,35-37}$ suggests that the rearrangement of the $E(22 S)$ allylic alcohol 22 should proceed through the chair-like transition state which has the smallest number of nonbonded interactions (i.e., pseudoaxial substituents). The $24 S$ configuration in 23 is predetermined by the initial $22 S$ configuration, the E geometry of the Δ^{23} double bond, and the preferred transition state. Similarly, the $Z(22 S)$ allylic alcohol 33 should give the $24 R$ compound 46.

The two Claisen rearrangement products 23 and 46 could be differentiated easily by $360-\mathrm{MHz}$ proton NMR spectroscopy as indicated in the table of chemical shifts of the methyl groups (Table I). The most noticeable feature is the large downfield shift of the C-21 methyl group in the $24 R$ (24β) compound 46. This same relative shift has been noted in other C-24 epimeric steroids. ${ }^{38}$ The E geometry of the Δ^{23} double bond was indicated by the appropriate coupling constants (see Experimental Section) and by an infrared band at $\sim 970 \mathrm{~cm}^{-1}$. The esters 23 and 46 were characterized further by regenerating the 3β -hydroxy- Δ^{5} system to give the solid derivatives 40 and 47.

[^4]Table II. Methyl Group Chemical Shifts of 24,53 , and $1 a^{a}$

compd	C-18	C-19	C-21	C-26	C-27
$\mathbf{2 4} 4^{c}$	0.678	1.008	0.921	0.842^{d}	0.850^{d}
$\mathbf{5 3}^{c}$	0.677	1.009	0.923	0.826^{d}	0.858^{e}
$1 \mathbf{a}^{f}$				0.827	0.859

${ }^{a}$ Solvent CDCl_{3}, internal standard Me_{4} Si. ${ }^{b}$ Doublet, $J=6.5 \mathrm{~Hz} .{ }^{c} 360-\mathrm{MHz}$ spectrum. ${ }^{d}$ Doublet, $J=6.8 \mathrm{~Hz}$. ${ }^{e}$ Doublet, $J=6.9 \mathrm{~Hz}$. $\quad f_{220}-\mathrm{MHz}$ spectrum. ${ }^{29}$

In order to fully characterize the stereochemistry at C -24, we converted the Claisen rearrangement esters 23 and 46 to known compounds (Scheme III). The rearrangement product 23 from the E allylic alcohol 22 was converted into stigmasterol (9) and sitosterol (44) and their acetates (43 and 45), and the rearrangement product 46 from the Z allylic alcohol 33 was converted into poriferasterol (51) and clionasterol (54) and their acetates (52 and 55).

Lithium aluminum hydride reduction of the methyl esters 23 and 46 gave approximately 85% of the noncrystalline 29 -hydroxy compounds 41 and 48 , respectively. The proton NMR spectra of 41 and 48 are characterized by a small downfield shift of the C-21 methyl group and a small upfield shift of the C-26 and C-27 methyl groups in the spectrum of the $24 R$ epimer 48 (see Experimental Section). Regeneration of the $\Delta^{5}-3 \beta$-hydroxy system gave the crystalline diol derivatives 42 and 49 from 41 and 48 , respectively. Conversion of the primary alcohol function to the mesylate ${ }^{39}$ and lithium aluminum hydride reduction led to stigmasteryl iso-methyl ether (10) and poriferasteryl iso-methyl ether (50) from 41 and 48 , respectively. The iso-methyl ethers 10 and 50 were cleaved to the crystalline stigmasterol (9) and poriferasterol (51) and then converted to their acetates 43 and 52. The physical constants of the synthetic compounds show good agreement with the known literature values (see Experimental Section). In addition, the $360-\mathrm{MHz}$ proton NMR spectra of $\mathbf{4 3 , 5 2}$, and authentic stigmasteryl acetate show clearly that 43 is identical with stigmasteryl acetate; 52 shows a significantly different peak pattern.

Hydrogenation of the iso-methyl ethers 10 and 50 over platinum oxide gave the saturated derivatives which were converted to sitosterol (44), clionasterol (54), and their acetates ($\mathbf{4 5}$ and $\mathbf{5 5}$). Comparison of the physical constants of the synthetic compounds with the known literature values confirms our structure assignment (see Experimental Section). It can safely be concluded from all of the above data that the Claisen rearrangement product 23 of the E ($22 S$) allylic alcohol 22 possesses the $24 S$ stereochemistry, while the Claisen rearrangement product 46 of the Z ($22 S$) allylic alcohol 33 has the $24 R$ stereochemistry.
The synthesis of the two side chain models of oogoniol could now be concluded. Hydrogenation of the 29-hydroxy compounds 41 and 48 over platinum oxide followed by regeneration of the 3β-hydroxy- Δ^{5} system gave the two crystalline diols 24 and 53, respectively. The $360-\mathrm{MHz}$ proton NMR spectra of the two diols were recorded, and the chemical shifts of the methyl groups are listed in Table II. While the chemical shifts of the C-18, C-19, and C-21 methyls are almost identical, there is a large difference in the shifts of the C-26 and C-27 methyls. In one case (53) the doublets are cleanly separated, and in the other case (24), the doublets overlap each other. The $100-\mathrm{MHz}$ spectra are also clearly different, although it is much more difficult to assign peaks.
(39) R. K. Crossland and K. L. Servis, J. Org. Chem., 35, 3195 (1970).

Comparison of the C-26 and C-27 chemical shifts of 29 and 50 with the published ${ }^{29}$ values ($220-\mathrm{MHz}$ spectra) for oogoniol-1 (1a) and oogoniol-2 (1b) (see Table II) clearly indicates that the side chain of 53 is the same as the side chain of oogoniol. Oogoniol, therefore, has the same configuration at $\mathrm{C}-24$ (i.e., $24 R=24 \beta$) as clionasterol (54), thus leading to the complete stereostructure $56 .{ }^{40}$

56
The configuration at $\mathrm{C}-24$ is consistent with the general pattern which has been observed for other 24 -alkyl phytosterols. In general, algae ${ }^{41}$ and fungi produce sterols with 24β configurations, while most higher plants produce sterols with 24α configurations. ${ }^{42}$

Experimental Section

General Procedures. Low-resolution mass spectra were obtained at 70 eV by Mr. R. G. Ross on an AEI MS-9 mass spectrometer with a source temperature of $200^{\circ} \mathrm{C}$ using a di-rect-inlet system for solids and a heated-inlet system ($150^{\circ} \mathrm{C}$) for liquids. Low-resolution GC/MS spectra were obtained on a Varian MAT-44 GC/MS system using a 2.7 mm i.d. $\times 2 \mathrm{~m}$ spiral glass column containing 3\% SP-2250 on Supelcoport 100/120 (Supelco Inc.) with an oven temperature of $270^{\circ} \mathrm{C}$. Due to the mass discrimination characteristics of the MAT-44, no relative intensities are given for these spectra. High-resolution mass spectra were recorded by Miss A. Wegmann on a Varian MAT-711 double-focusing mass spectrometer using a direct-inlet system for sample introduction and a PDP-11/45 computer for data acquisition and reduction.

Nuclear magnetic resonance spectra were recorded on a Varian Associates T-60 NMR spectrometer (${ }^{1} \mathrm{H}$ NMR), a Varian Associates XL-100-15 NMR spectrometer equipped with a Nicolet TT 1010-A computer (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR), and a Bruker HXS-360 NMR spectrometer equipped with a Nicolet TT 1010-A computer (${ }^{1} \mathrm{H}$ NMR). All NMR spectra were taken in CDCl_{3} solution with $\mathrm{Me}_{4} \mathrm{Si}$ as the internal reference unless otherwise indicated. The XL-100 spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) were determined by Lee C. Garver, and the $360-\mathrm{MHz}$ spectra were determined by Dr. L. J. Durham.
Elemental analyses were performed by Mr. E. H. Meier, Microanalytical Laboratory, Department of Chemistry, Stanford University. Melting points are uncorrected and were determined on a Kofler hot-stage apparatus. Infrared spectra were obtained on a Perkin-Elmer 700A infrared spectrometer as thin films or as solid dispersions in KBr . Optical rotations were measured on a Perkin-Elmer Model 141 spectropolarimeter for solutions in chloroform.

Routine analytical gas-liquid chromatography (GLC) was performed on a Hewlett-Packard Model 402 high-efficiency gas chromatograph equipped with a flame ionization detector, using 4 mm i.d. $\times 1.7 \mathrm{~m}$ U-shaped glass columns packed with either 1% OV- $25,3 \%$ OV-17, or 3% OV- 225 on $100 / 120$ mesh GasChrom Q (Applied Science, Inc.). Helium was used as the carrier gas at a flow rate of $75-80 \mathrm{~mL} / \mathrm{min}$. Preparative GLC was performed on a Varian Aerograph Series 2700 gas chromatograph using a $10 \mathrm{ft} \times 3 / 8 \mathrm{in}$. aluminum column packed with $20 \% \mathrm{SE}-30$ on $45 / 60$ mesh Chromosorb P at a column temperature of $80^{\circ} \mathrm{C}$

[^5]and using helium as the carrier gas.
Analytical thin-layer chromatography (TLC) was performed on $2.5 \mathrm{~cm} \times 10 \mathrm{~cm}$ TLC plates precoated with a 0.25 mm thick layer of silica gel GF (Analtech, Inc.). The plates were visualized by spraying with a 2% solution of cerium(IV) sulfate in 2 N sulfuric acid followed by heating. Preparative TLC was done on 0.75 mm thick HF $254+366$ (type 60) silica gel (E. Merck) plates ($20 \mathrm{~cm} \times 20 \mathrm{~cm}$). The bands were detected either visually or by viewing under ultraviolet light. Column chromatography was carried out on E. Merck neutral, activity II alumina, E. Merck silica gel 60 ($70-230$ mesh ASTM), and E. Merck TLC grade silica gel HF $254+366$ (type 60).

Preparative high-pressure liquid chromatography (LC) was performed by using a Haskel Model 28030 miniaturized air-driven hydraulic pump, a 0-5000-psi Ashroft gauge, and a Waters Associates Model R401 differential refractometer. The separations were carried out on a Whatman Partisil M9 10/50 ODS-2 column ($50 \mathrm{~cm} \times 8 \mathrm{~mm}$ i.d.), using absolute methanol as the mobile phase.

The progress of all reactions and column chromatographies was monitored by TLC and/or GLC.

3-Methyl-1-butyne (35) was obtained from the Farchan Division, Story Chemical Corp. Dry THF was obtained by distillation from Na-benzophenone. Triethylamine and methanesulfonyl chloride were distilled before use.

Regeneration of the 3β-hydroxy- Δ^{5} system from the $3 \alpha, 5 \alpha-$ cyclo- 6β-methoxy system was accomplished by dissolving the iso-methyl ether compound in dioxane (ca. $1 \mathrm{~mL} / 10 \mathrm{mg}$ of compound) followed by addition of water until the stirred solution became cloudy (ca. $0.5 \mathrm{~mL} / 10 \mathrm{mg}$ of compound). ${ }^{43}$ A small crystal of p-toluenesulfonic acid monohydrate was added, and the solution was heated at $100^{\circ} \mathrm{C}$ for 1 h . Water was added until the solution just clouded, and it was allowed to cool. Filtration followed by recrystallization gave the desired product.
(20S)-6 β-Methoxy- $3 \alpha, 5$-cyclo- 2α-pregnane-20-carboxaldehyde (11). The aldehyde 11 was prepared according to literature procedures ${ }^{23,24}$ from stigmasterol (9) via its iso-methyl ether 10. Apparently the aldehyde is not as unstable as previously reported, ${ }^{44}$ since it could be chromatographed (silica gel, 5% EtOAc/hexane, fractions collected under N_{2}) to give the pure aldehyde as a white crystalline solid: $\mathrm{mp} 82-83^{\circ} \mathrm{C} ;[\alpha]_{D^{20}}+42^{\circ}$; NMR ($60 \mathrm{MHz}, \mathrm{CCl}_{4}$) $\delta 0.3-0.7(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 0.78(3 \mathrm{H}, \mathrm{s}$, $\left.18-\mathrm{CH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 1.09\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right)$, $2.68\left(1 \mathrm{H}, \mathrm{m}, 6 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .7 \mathrm{~Hz}\right), 3.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 9.53(1$ $\mathrm{H}, \mathrm{d}, \mathrm{CHO}, J=2.5 \mathrm{~Hz}$); mass spectrum (MAT-44) $\mathrm{m} / \mathrm{z} 344(25 \%$, M^{+}), 289 ($100, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}$ (ring A fission)); IR (film) $1722 \mathrm{~cm}^{-1}$.

Ethyl ($22 E, 24 S, 25 \xi)-6 \beta$-Methoxy- $3 \alpha, 5$-cyclo- 5α-stig-mast-22-en-26-oate (18). The 22 S alcohol 16 ($0.940 \mathrm{~g}, 2.34 \mathrm{mmol}$), triethyl orthopropionate ($0.94 \mathrm{~g}, 5.3 \mathrm{mmol}$), and two drops of propionic acid were heated under reflux in 10 mL of dry xylene for $3 \mathrm{~h} .{ }^{26,27}$ Removal of the solvent and excess reagent under reduced pressure gave an oily residue which was purified by column chromatography (alumina, $17 \% \mathrm{EtOAc} /$ hexane) to give the oily ethyl ester 18 ($0.736 \mathrm{~g}, 63 \%$). GC analysis ($3 \% \mathrm{OV}-225$, $230^{\circ} \mathrm{C}$) showed that the product was a mixture of two compounds in a ratio of 4:5: NMR (60 MHz) $\delta 0.3-0.7(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 0.73$ $\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.77\left(1 \mathrm{H}, \mathrm{m}, 6 \alpha-\mathrm{H}, w_{1 / 2}\right.$ ca. 6 Hz$), 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.10$ and $4.13(2 \mathrm{H}, 2$ quartets, $\mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{C}-25$ epimers, $J=7 \mathrm{~Hz}$), $4.9-5.3(2 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}$ and $23-\mathrm{H}$); mass spectrum (MAT-711) m/z $484.3938\left(\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{3}, 18 \%\right.$, $\left.\mathrm{M}^{+}\right), 469.3726\left(\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{O}_{3}, 21, \mathrm{M}-\mathrm{CH}_{3}\right), 452.3673\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{2}, 89\right.$, $\mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}$), $429.3317\left(\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{O}_{3}, 38, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}\right.$ (ring A fission)), $313.2503\left(\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}, 14, \mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $+2 \mathrm{H})$, $283.2401\left(\mathrm{C}_{21} \mathrm{H}_{31}, 24, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}\right.\right.$ and $\mathrm{C}(20)-\mathrm{C}(22)$ fission)), $255.2116\left(\mathrm{C}_{19} \mathrm{H}_{27}, 53, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ side chain $)$), 253.1993 $\left(\mathrm{C}_{19} \mathrm{H}_{25}, 71, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ side chain $\left.+2 \mathrm{H}\right)$), $227.1785\left(\mathrm{C}_{17} \mathrm{H}_{23}\right.$, $38, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.$ side chain $+(\mathrm{C}(16)-\mathrm{C}(17)$ unit $\left.\left.)+1 \mathrm{H}\right)\right)$, $224.1766\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}, 32\right.$, side chain $+(\mathrm{C}(16)-\mathrm{C}(17)$ unit)), 213.1688 $\left(\mathrm{C}_{16} \mathrm{H}_{21}, 24, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ ring D fission $\left.+1 \mathrm{H}\right)$), $95.0860\left(\mathrm{C}_{7} \mathrm{H}_{11}\right.$, 100); IR (film) $1725,970 \mathrm{~cm}^{-1}$.

Ethyl (22E,24R,25)-6 β-Methoxy-3 $\alpha, 5$-cyclo-5 α-stig-mast-22-en-26-oate (17). The $22 R$ alcohol $5(0.410 \mathrm{~g})$ was re-
(43) J. J. Partridge, S. Faber, and M. R. Uskokovic, Helu. Chim. Acta, 57, 764 (1964).
(44) G. D. Anderson, T. J. Powers, C. Djerassi, J. Fayos, and J. Clardy, J. Am. Chem. Soc., 97, 388 (1975).
arranged in the same manner as 16 to give, after chromatography, the oily ester $17(0.356 \mathrm{~g}, 70 \%$). GC analysis (3% OV-225, 230 ${ }^{\circ} \mathrm{C}$) showed the presence of two compounds in a ratio of 4:5: NMR (60 MHz) same as that for 18 ; mass spectrum (MAT-711) $\mathrm{m} / \boldsymbol{z}$ $484.3881\left(\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{3}, 9 \%, \mathrm{M}^{+}\right), 469.3677\left(\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{O}_{3}, 25, \mathrm{M}-\mathrm{CH}_{3}\right)$, $452.3615\left(\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{2}, 97, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right), 429.3339\left(\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{O}_{3}, 35, \mathrm{M}\right.$ $\mathrm{C}_{4} \mathrm{H}_{7}$ (ring A fission)), $313.2504\left(\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}, 25, \mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}\right.$ $(\mathrm{C}(20)-\mathrm{C}(22)$ fission $+2 \mathrm{H})$), $283.2420\left(\mathrm{C}_{21} \mathrm{H}_{31}, 29, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}\right.\right.$ and $\mathrm{C}(20)-\mathrm{C}(22)$ fission $)$), $255.2088\left(\mathrm{C}_{19} \mathrm{H}_{27}, 65, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ side chain)), $253.1924\left(\mathrm{C}_{19} \mathrm{H}_{25}, 100, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ side chain + $2 \mathrm{H})$), 227.1828 $\mathrm{C}_{17} \mathrm{H}_{23}, 39, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.$ side chain $+(\mathrm{C}-$ (16)-C(17) unit) $+1 \mathrm{H})$), $224.1748\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}, 33\right.$, side chain + ($\mathrm{C}(16)-\mathrm{C}(17)$ unit) $), 213.1612\left(\mathrm{C}_{16} \mathrm{H}_{21}, 31, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ ring D fission +1 H); IR $1725,970 \mathrm{~cm}^{-1}$.
(E)-(3-Methyl-1-butenyl)boranediol (30). Catecholborane $(12.0 \mathrm{~g}, 0.10 \mathrm{~mol})$ and 3-methyl-1-butyne $(35,10.2 \mathrm{~mL}, 0.10 \mathrm{~mol})$ were combined under argon at $5^{\circ} \mathrm{C}$ in a Fisher-Porter bottle. ${ }^{30}$ The bottle was sealed, and the solution was stirred for 30 min at room temperature and 2 h at $70^{\circ} \mathrm{C}$. After the solution cooled to room temperature, the benzodioxaborole 36 was hydrolyzed by pouring it into 100 mL of water and stirring at room temperature for 3 h . After the mixture was cooled in an ice bath, the white solid was collected by filtration and thoroughly washed with ice-cold water to remove catechol. Air-drying gave 8.2 g (72%) of the diol $30: \mathrm{mp} 44-46^{\circ} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right) ; \mathrm{NMR}(60 \mathrm{MHz}$, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 0.97\left(6 \mathrm{H}, \mathrm{d},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, J=6.5 \mathrm{~Hz}\right), 2.32(1 \mathrm{H}, \mathrm{br}$ septet, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, J \approx 6 \mathrm{~Hz}$), 2.88 (water of hydration), 5.31 (1 $\mathrm{H}, \mathrm{dd},(\mathrm{HO})_{2} \mathrm{BCH}=\mathrm{C}, J=1$ and 18 Hz$), 6.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{CHCH}=\mathrm{C}$, $J=6$ and $18 \mathrm{Hzl}, 6.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{B}(\mathrm{OH})_{2}\right)$.
(E)-1-Iodo-3-methyl-1-butene (27). The boranediol 30 (3.9 $\mathrm{g}, 34 \mathrm{mmol}$) was dissolved in 35 mL of ether and cooled to $0-5$ ${ }^{\circ} \mathrm{C}$ in an ice bath ${ }^{30}$ To the stirred solution was added aqueous NaOH solution (34 mL of 3 N) followed by a cold solution of elemental iodine ($10.4 \mathrm{~g}, 41 \mathrm{mmol}$) in 100 mL of ether. After being stirred for 30 min at $0^{\circ} \mathrm{C}$, the solution was allowed to warm to room temperature, and the excess iodine was destroyed with aqueous sodium thiosulfate solution. The aqueous layer was separated and extracted with ether $(1 \times 50 \mathrm{~mL})$. The combined organic layers were washec with water and saturated NaCl solution and dried over anhydrous MgSO_{4}. Removal of the solvent at atmospheric pressure followed by distillation at reduced pressure gave the pure iodide: bp $54-56^{\circ} \mathrm{C}(50 \mathrm{~mm})$; $\mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CCl}_{4}\right)$ $\delta 1.07\left(6 \mathrm{H}, \mathrm{d},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, J=7 \mathrm{~Hz}\right), 2.29(1 \mathrm{H}, \mathrm{br}$ septet, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, J \approx 7 \mathrm{~Hz}\right), 5.92(1 \mathrm{H}, \mathrm{d}, \mathrm{ICH}=\mathrm{C}, J=14.5 \mathrm{~Hz}), 6.47$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{CHCH}=\mathrm{C}, J=7$ and 14.5 Hz).
(22S,23E)-6 β-Methoxy- $3 \alpha, 5$-cyclo- 5α-cholest-23-en-22-ol (22). The vinyllithium reagent 25 was prepared by addition of a solution of n-butyllithium in hexane $(5.9 \mathrm{~mL}$ of a 1.36 M solution, $8.0 \mathrm{mmol})$ to a stirred solution of the vinyl iodide $27(1.42 \mathrm{~g}, 7.25$ $\mathrm{mmol})$ in dry ether (15 mL) at $-75^{\circ} \mathrm{C}$. . 45 The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 20 min and then cooled to $-75^{\circ} \mathrm{C}$. A solution of the aldehyde $11(2.00 \mathrm{~g}, 5.8 \mathrm{mmol})$ in 15 mL of dry ether was added dropwise to the stirred solution of vinyllithium reagent. ${ }^{45}$ The mixture was stirred for 30 min at $-75^{\circ} \mathrm{C}$, allowed to warm to -20 ${ }^{\circ} \mathrm{C}$, and hydrolyzed by careful addition of saturated, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1 mL). The stirred mixture was allowed to warm to room temperature, and 10 mL of water was added. The aqueous layer was separated and extracted with ether $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous NaCl solution ($2 \times 20 \mathrm{~mL}$) and dried over anhydrous MgSO_{4}. Removal of the solvent afforded an oily residue which was purified by column chromatography (TLC grade silica gel, $5 \% \mathrm{EtOAc} /$ hexane) to give first crystalline 22: $1.20 \mathrm{~g}, 50 \% ; R_{f} 0.54(20 \%$ $\mathrm{EtOAc} /$ hexane $)$; mp $116.0-116.5^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right) ; \mathrm{NMR}(100$ $\mathrm{MHz}) \delta 0.43(1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=-5$ and 8 Hz$), 0.65(1 \mathrm{H}, \mathrm{t}, 4 \beta-\mathrm{H}$, $J=5 \mathrm{~Hz}), 0.732\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.890\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=5.9\right.$ $\mathrm{Hz}), 0.995\left(6 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}\right.$ and $\left.27-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right), 1.028(3 \mathrm{H}$, s, $19-\mathrm{CH}_{3}$), $2.26(1 \mathrm{H}$, br septet, $25-\mathrm{H}, J \approx 7 \mathrm{~Hz}), 2.77(1 \mathrm{H}, \mathrm{m}$, $\left.6 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .5 \mathrm{~Hz}\right), 3.323\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.21(1 \mathrm{H}$, br t, 22-H, $J=4.5 \mathrm{~Hz}), 5.40 \leqslant 1 \mathrm{H}, \mathrm{dd}, 23-\mathrm{H}, J=4$ and 15.5 Hz$), 5.62(1 \mathrm{H}$, dd, $24-\mathrm{H}, J=5$ and 15.5 Hz) ; mass spectrum (MAT-711) m / z $414.3487\left(\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{C}_{2} .5 \%, \mathrm{M}^{+}\right), 359.2952\left(\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{2}, 17, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}\right.$ (ring A fission)), 3.6 .2737 $^{\prime} \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}, 29, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}(\mathrm{C}(20)-\mathrm{C}(22)$
(45) G. Cahiez, D Bernard, and J. F. Normant, Synthesis, 245 (1976).
fission - 1 H$)$), $301.2528\left(\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}, 11, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $\left.-1 \mathrm{H}+\mathrm{CH}_{3}\right)$), 284.2504 $\left(\mathrm{C}_{21} \mathrm{H}_{32}, 100, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $\left.-1 \mathrm{H}+\mathrm{CH}_{3} \mathrm{OH}\right)$), $283.2429\left(\mathrm{C}_{21} \mathrm{H}_{31}, 75, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}\right.\right.$ and (C-(20)-C(22) fission)), $269.2237\left(\mathrm{C}_{20} \mathrm{H}_{22}, 13, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $-1 \mathrm{H}+\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{OH}$)), $261.2194\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}, 12, \mathrm{M}\right.$ - (side chain $+(\mathrm{C}(16)-\mathrm{C}(17)$ unit) $-1 \mathrm{H})), 255.2116\left(\mathrm{C}_{19} \mathrm{H}_{27}, 19, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}\right.\right.$ + side chain)), $253.1956\left(\mathrm{C}_{19} \mathrm{H}_{25}, 25, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ side chain $+2 \mathrm{H})$), $227.1775\left(\mathrm{C}_{17} \mathrm{H}_{23}, 13, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ side chain + (C(16)-C(17) unit) $+1 \mathrm{H})$), $215.1787\left(\mathrm{C}_{16} \mathrm{H}_{23}, 19, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}\right.\right.$ + ring D fission - 1 H)), $213.1629\left(\mathrm{C}_{16} \mathrm{H}_{21}, 38, \mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ ring D fission $+1 \mathrm{H})$). Further elution afforded $0.26 \mathrm{~g}(11 \%)$ of a noncrystalline compound ($R_{f} 0.41,20 \%$ EtOAc/hexane) which, based on analogy, is probably ($22 R, 23 E)-6 \beta$-methoxy- $3 \alpha, 5$ -cyclo-5 α-cholest-23-en-22-ol (26).
(22 S, $23 E$)-Cholesta-5,23-diene-3 8,22 -diol (28). Alcohol 22 was converted to the diol 28 by reaction with $p-\mathrm{TsOH}$ in aqueous dioxane: mp $157.5-159{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right) ; \mathrm{NMR}(100 \mathrm{MHz}) \delta$ $0.697\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.896\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=5.8 \mathrm{~Hz}\right), 0.996$ ($6 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}$ and $27-\mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}$), $1.010\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right)$, $3.51\left(1 \mathrm{H}\right.$, br m, $3 \alpha-\mathrm{H}, w_{1 / 2}$ ca. 25 Hz), $4.10\left(1 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}, w_{1 / 2}\right.$ ca. 10 Hz), $5.36\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, w_{1 / 2} \mathrm{ca} .9 \mathrm{~Hz}\right), 5.40(1 \mathrm{H}, \mathrm{m}, 23-\mathrm{H})$, $5.62(1 \mathrm{H}, \mathrm{dd}, 24-\mathrm{H}, J=5$ and 15.5 Hz); mass spectrum (MS-9) $m / z 400\left(1 \%, \mathrm{M}^{+}\right), 302\left(42, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $1 \mathrm{H})$), 301 ($15, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)$ fission $)$), 284 ($60, \mathrm{M}-(\mathrm{C}-$ (20)-C(22) fission $\left.-1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}\right)$), $283(38, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)$ fission $\left.+\mathrm{H}_{2} \mathrm{O}\right)$), $271(9, \mathrm{M}-($ side chain $+2 \mathrm{H})$), $269(18, \mathrm{M}-(\mathrm{C}(20)-$ $\mathrm{C}(22)$ fission $\left.-1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right)$), 217 (10), 215 ($21, \mathrm{M}$ - (ring D fission $\left.-1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}\right)$), $213(29, \mathrm{M}-$ (ring D fission $+1 \mathrm{H}+$ $\left.\mathrm{H}_{2} \mathrm{O}\right)$), 99 (100).
(22S)-Cholest-5-ene-3 β,22-diol (29). Alcohol 22 ($30 \mathrm{mg}, 0.072$ mmol) was hydrogenated ${ }^{46}$ at atmospheric pressure over PtO_{2} (10 mg) in 10 mL of ethyl acetate. After the catalyst was removed by filtration through Celite, the solvent was evaporated to leave the saturated noncrystalline alcohol. The 3β-hydroxy- Δ^{5} system was regenerated in the usual manner (aqueous dioxane, $p-\mathrm{TsOH}$) to give the crystalline diol 29 ($25 \mathrm{mg}, 86 \%$): $\mathrm{mp} 180-182^{\circ} \mathrm{C}$ $(\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}{ }^{20}-53^{\circ}(c 0.55)$ (lit. ${ }^{31} \mathrm{mp} 180^{\circ} \mathrm{C}(\mathrm{MeOH})$, lit. ${ }^{31}[\alpha]_{\mathrm{D}}$ -54°); NMR (100 MHz) $\delta 0.697\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.893(9 \mathrm{H}, \mathrm{d}$, $21-\mathrm{CH}_{3}, 26-\mathrm{CH}_{3}$, and $\left.27-\mathrm{CH}_{3}, J=6.1 \mathrm{~Hz}\right), 1.013\left(3 \mathrm{H}, \mathrm{s}, 19 \cdot \mathrm{CH}_{3}\right)$, $3.30-3.75(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 22-\mathrm{H}$ and $3 \alpha-\mathrm{H}), 5.35\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, w_{1 / 2}\right.$ ca. 10 Hz); mass spectrum (MS-9) $m / z 402\left(15 \%, \mathrm{M}^{+}\right), 384(9, \mathrm{M}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right), 369\left(6, \mathrm{M}-\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right)\right), 351\left(5, \mathrm{M}-\left(2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right)\right), 302$ $\left(10, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $-1 \mathrm{H})$), $287\left(7, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}\right.$ ($\mathrm{C}(20)-\mathrm{C}(22)$ fission $\left.-1 \mathrm{H}+\mathrm{CH}_{3}\right)$), $284\left(8, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{C}-\right.$ (20)- $\mathrm{C}(22)$ fission $-1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}$), 273 ($10, \mathrm{M}$ - side chain), 269 (9, $\mathrm{M}-\left(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $\left.-1 \mathrm{H}+\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}\right)$), 217 (8), 215 ($8, \mathrm{M}-$ (ring D fission $-1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}$)), 213 (12, M - (ring D fission $+1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}$), $55(100)$. For further characterization (because (22R)-cholest-5-ene-3 $\beta, 22$-diol has ${ }^{31} \mathrm{mp} 186^{\circ} \mathrm{C}$ and $[\alpha]_{\mathrm{D}}-39^{\circ}$) the diol 29 was converted to its diacetate ($22 S$)-cholest-5-ene- $3 \beta, 22$-diol diacetate) with acetic anhydride and pyridine: $\operatorname{mp} 143-145{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}{ }^{20}-58^{\circ}$ (c 0.30) (lit. ${ }^{31} \mathrm{mp} \mathrm{145-146}$ ${ }^{\circ} \mathrm{C}$, lit. $\left.{ }^{31}[\alpha]_{\mathrm{D}}-59^{\circ}\right)\left(\right.$ lit. ${ }^{31}$ values for $(22 R)$-cholest-5-ene-3 $\beta, 22$-diol diacetate: $\left.\mathrm{mp} 101.5-103^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}-37.5^{\circ}\right)$; NMR (100 $\mathrm{MHz}) \delta 0.684\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.872\left(6 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}\right.$ and $27-\mathrm{CH}_{3}$ $J=6.3 \mathrm{~Hz}), 0.964\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 1.016(3 \mathrm{H}, \mathrm{s}$, $\left.19-\mathrm{CH}_{3}\right), 2.026(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.036(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 4.62(1 \mathrm{H}, \mathrm{br}$ $\mathrm{m}, 3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .24 \mathrm{~Hz}$), $4.94(1 \mathrm{H}$, br t, $22-\mathrm{H}, J=6 \mathrm{~Hz}$), 5.38 $\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, w_{1 / 2}\right.$ ca. 10 Hz).
(Z) - and (E)-1-Bromo-3-methyl-1-butene (37 and 38), (E)-2-(3-Methyl-1-butenyl)-1,3,2-benzodioxaborole ($36,0.110 \mathrm{~mol}$) was prepared as described above in the preparation of 30 . The solution was transferred under argon to a round-bottomed flask and 140 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The solution was cooled to $-40^{\circ} \mathrm{C}$ and bromine ($35.2 \mathrm{~g}, 0.220 \mathrm{~mol}$) was added dropwise over a period of $20 \mathrm{~min} .{ }^{32}$ After the dark orange suspension was stirred for $1 \mathrm{~h}, 220 \mathrm{~mL}$ of a 2 M solution of NaOMe in methanol was slowly added, and the resulting mixture was stirred for 30 min at $-40^{\circ} \mathrm{C}$. The cooling bath was removed, and the mixture was

[^6]allowed to warm to room temperature. After addition of 110 mL of water, the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water $(1 \times 50 \mathrm{~mL})$ and saturated aqueous NaCl solution (1 $\times 50 \mathrm{~mL}$) and dried over anhydrous MgSO_{4}. Removal of the solvent at atmospheric pressure followed by distillation gave 11.5 $\mathrm{g}(70 \%)$ of a clear, colorless liquid (bp $99-110^{\circ} \mathrm{C}$) which was shown by $G C$ to be a $63: 37$ mixture of Z and E vinyl bromides. Pure 37 and 38 were obtained by preparative GLC. (Z)-1-Bromo-3-methyl-1-butene (37) ${ }^{33}$ (shorter retention time): NMR (100 $\mathrm{MHz}) \delta 1.02\left(6 \mathrm{H}, \mathrm{d},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, J=7 \mathrm{~Hz}\right), 2.82(1 \mathrm{H}, \mathrm{d}$ of septets, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, J=7$ and 8 Hz$), 5.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{CHCH}=\mathrm{CHBr}, J=$ 7 and 8 Hz$), 6.02(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}=\mathrm{CHBr}, J=7 \mathrm{~Hz})$; mass spectrum (MS-9) m/z $150 / 148\left(3 \%, \mathrm{M}^{+}\right), 135 / 133\left(8, \mathrm{M}-\mathrm{CH}_{3}\right), 69(100$, $\mathrm{M}-\mathrm{Br}), 53\left(68,\left(\mathrm{M}-\mathrm{CH}_{3}\right)-\mathrm{HBr}\right), 51$ (15), 50 (10), 41 (91, (M $-\mathrm{Br})-\mathrm{C}_{2} \mathrm{H}_{4}$), $39\left(38,\left(\mathrm{M}-\mathrm{Br}-\mathrm{C}_{2} \mathrm{H}_{4}\right)-\mathrm{H}_{2}\right.$). (\boldsymbol{E})-1-Bromo-3-methyl-1-butene (38) ${ }^{33}$ (longer retention time): NMR (100 $\mathrm{MHz}) \delta 1.02\left(6 \mathrm{H}, \mathrm{d},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, J=7 \mathrm{~Hz}\right), 2.34(1 \mathrm{H}$, septet, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}, J=7 \mathrm{~Hz}\right), 5.96(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}=\mathrm{CHBr}, J=13 \mathrm{~Hz}), 6.16$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{CHCH}==\mathrm{CHBr}, J=6$ and 13 Hz); mass spectrum (MS-9) $m / z 150 / 148\left(4 \%, \mathrm{M}^{+}\right), 135 / 133\left(10, \mathrm{M}-\mathrm{CH}_{3}\right), 69(100, \mathrm{M}-\mathrm{Br})$, $53\left(69,\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{I}-\mathrm{HBr}\right), 51(12), 50(8), 41\left(84,(\mathrm{M}-\mathrm{Br})-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$, $39\left(31,\left(\mathrm{M}-\mathrm{Br}-\mathrm{C}_{2} \mathrm{H}_{4}\right)-\mathrm{H}_{2}\right)$. The mass spectra for 37 and 38 differ significantly from the reported ${ }^{33}$ spectra which show a base peak at $m / z 85$ for 37 and at $m / z 147$ for 38 .
(22S,23Z)-6 β-Methoxy-3 $\alpha, 5-$ cyclo-5 α-cholest-23-en-22-ol (33). (Z)-(3-Methyl-1-butenyl)lithium (31) was prepared by dropwise addition of a solution of tert-butyllithium in pentane (5.64 mL of a 1.62 M solution, 9.14 mmol) to a stirred solution of the Z vinyl bromide $37(0.65 \mathrm{~g}, 4.4 \mathrm{mmol})$ under argon in 18 mL of Trapp mixture (THF/Et $\mathrm{E}_{2} \mathrm{O} /$ pentane (4:1:1)) cooled to -120 ${ }^{\circ} \mathrm{C}$ with a methylcyclohexane-liquid N_{2} bath. ${ }^{34}$ The temperature was maintained between -120 and $-115^{\circ} \mathrm{C}$ for 1 h and then allowed to increase to $-90^{\circ} \mathrm{C}$. A solution of the aldehyde $11(1.20$ $\mathrm{g}, 3.48 \mathrm{mmol}$) in 6 mL of THF was added dropwise over a period of 5 min and stirring was continued for 15 min at $-75^{\circ} \mathrm{C}$. After the solution was allowed to warm to room temperature, it was hydrolyzed by careful addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Workup in the usual manner gave an oily residue which was purified by column chromatography (TLC grade silica gel, $5 \% \mathrm{EtOAc} /$ hexane $)$ to give first (22 $)$-6 β-methoxy-23,23-di-methyl-3 $\alpha, 5$-cyclo- 5α-cholan-22-ol (34): $170 \mathrm{mg}, 12 \% ; R_{f} 0.59$ (20% EtOAc/hexane); mp $130-131^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right.$); NMR (100 $\mathrm{MHz}) \delta 0.43(1 \mathrm{H}$, dd, $4 \alpha-\mathrm{H}, J=-5.0$ and 8.1 Hz$), 0.65(1 \mathrm{H}, \mathrm{dd}$, $4 \beta-\mathrm{H}, J=-4.9$ and 3.6 Hz$), 0.753\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.925(9 \mathrm{H}$, $\left.\mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=5.5 \mathrm{~Hz}\right), 1.022(3 \mathrm{H}, \mathrm{s}$, $\left.19-\mathrm{CH}_{3}\right), 2.78(1 \mathrm{H}$, br $\mathrm{t}, 6 \alpha-\mathrm{H}, J=2.5 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{d}, 22-\mathrm{H}$, $J \approx 4 \mathrm{~Hz}$), $3.324\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$; mass spectrum (MAT-711) m/z $402.3520\left(\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{2}, 27 \%, \mathrm{M}^{+}\right), 387.3281\left(\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{O}_{2}, 11, \mathrm{M}-\mathrm{CH}_{3}\right)$, $370.3242\left(\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}, 19, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right), 347.2934\left(\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{2}, 20, \mathrm{M}\right.$
$-\mathrm{C}_{4} \mathrm{H}_{7}$ (ring A fission)), $345.2791\left(\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{2}, 22, \mathrm{M}-t\right.$ - Bu), $313.2538\left(\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}, 100, \mathrm{M}-\left(t-\mathrm{Bu}+\mathrm{CH}_{3} \mathrm{OH}\right)\right), 295.2433\left(\mathrm{C}_{22} \mathrm{H}_{31}\right.$, $\left.34, \mathrm{M}-\left(t-\mathrm{Bu}+\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}\right)\right), 284.2501\left(\mathrm{C}_{21} \mathrm{H}_{32}, 10, \mathrm{M}-\right.$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right.$ and $\mathrm{C}(20)-\mathrm{C}(22)$ fission $\left.-1 \mathrm{H}\right)$), $255.2109\left(\mathrm{C}_{19} \mathrm{H}_{27}, 15\right.$, M - (side chain $\left.+\mathrm{CH}_{3} \mathrm{OH}\right)$), $227.1798\left(\mathrm{C}_{17} \mathrm{H}_{23}, 11, \mathrm{M}\right.$ - (side chain $+\mathrm{CH}_{3} \mathrm{OH}+(\mathrm{C}(16)-\mathrm{C}(17)$ unit $\left.\left.)+1 \mathrm{H}\right)\right), 213.1634\left(\mathrm{C}_{16} \mathrm{H}_{21}, 10\right.$, $\mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.$ ring D fission $\left.+1 \mathrm{H}\right)$). Continued elution afforded, as a glass, $690 \mathrm{mg}(48 \%)$ of the $22 S$ alcohol 33: $R_{f} 0.52$ (20% EtOAc/hexane); NMR (100 MHz) $\delta 0.43$ ($1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}$, $J=-5$ and 8 Hz$), 0.65(1 \mathrm{H}, \mathrm{m} 4 \beta-\mathrm{H}), 0.723\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.958$ $\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right), 0.976\left(3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right)$, $0.995\left(3 \mathrm{H}, \mathrm{d}, 21 .-\mathrm{CH}_{3}, J=5.8 \mathrm{~Hz}\right), 1.024\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.77$ ($1 \mathrm{H}, \mathrm{m}, 6 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .6 \mathrm{~Hz}$), $3.327\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.55(1 \mathrm{H}$, $\mathrm{d}, 22-\mathrm{H}, J=7.4 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{dd}, 24-\mathrm{H}, J=9.1$ and 11.1 Hz), $5.43(1 \mathrm{H}$, dd, $23-\mathrm{H}, J=7.4$ and 11.0 Hz); mass spectrum (MAT-44) m/z $414\left(\mathrm{M}^{+}\right), 382\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right.$), $359\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7}\right.$ (ring A fission)), $316(\mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)$ fission $-1 \mathrm{H})$), $315(\mathrm{M}$ ($\mathrm{C}(20)-\mathrm{C}(22)$ fission) $), 301(\mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)$ fission $-1 \mathrm{H}+$ $\left.\mathrm{CH}_{3}\right)$), $284\left(\mathrm{M}-\left(\mathrm{C}(20)-\mathrm{C}(22)\right.\right.$ fission $\left.-1 \mathrm{H}+\mathrm{CH}_{3} \mathrm{OH}\right)$), $283(\mathrm{M}$ $-\left(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $\left.\left.+\mathrm{CH}_{3} \mathrm{OH}\right)\right), 269(\mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)$ fission $\left.-1 \mathrm{H}+\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{OH}\right)$), $261(\mathrm{M}-$ (side chain $+(\mathrm{C}(16)-\mathrm{C}(17)$ unit) -1 H), $255\left(\mathrm{M}-\right.$ (side chain $\left.+\mathrm{CH}_{3} \mathrm{OH}\right)$), $253(\mathrm{M}-$ (side chain $\left.+\mathrm{CH}_{3} \mathrm{OH}+2 \mathrm{H}\right)$), $227\left(\mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ side chain + ($\mathrm{C}(16)-\mathrm{C}(17)$ unit) $+1 \mathrm{H})$), $215\left(\mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ ring D fission $-1 \mathrm{H})$), $213\left(\mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\right.\right.$ ring D fission $\left.+1 \mathrm{H}\right)$). Further elution gave 370 mg (26%) of a noncrystalline compound ($R_{f} 0.41$
(20\% EtOAc/hexane)) which, based on analogy and spectra, is (22R,23Z)-6 β-methoxy-3 $\alpha, 5$-cyclo-5 α-cholest-23-en-22-ol (32); NMR (100 MHz) $\delta 0.42(1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=-4.9$ and 8.1 Hz$), 0.65$ $(1 \mathrm{H}, \mathrm{dd}, 4 \beta-\mathrm{H}, J=-4.9$ and 3.8 Hz$), 0.754\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.976$ $\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}\right), 0.990\left(6 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}\right.$ and $27-\mathrm{CH}_{3}$, $J=6.2 \mathrm{~Hz}), 2.77(1 \mathrm{H}$, br t $, 6 \alpha-\mathrm{H}, J \approx 2 \mathrm{~Hz}), 3.318\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.47(1 \mathrm{H}, \mathrm{dd}, 22-\mathrm{H}, J=3.4$ and 7.8 Hz$), 5.36(2 \mathrm{H}$, complex m, $23-\mathrm{H}$ and $24-\mathrm{H}$); mass spectrum (MAT-44) $\mathrm{m} / \mathrm{z} 414\left(\mathrm{M}^{+}\right)$, rest of spectrum same as that for 33.
($22 S, 23 Z$)-Cholesta-5,23-diene-3 $\beta, 22$-diol (39). Alcohol 33 was reacted with $p-\mathrm{TsOH}$ in aqueous dioxane to give the diol 39 : $\mathrm{mp} 183-184^{\circ} \mathrm{C}$ (dioxane $\left./ \mathrm{H}_{2} \mathrm{O}\right)$; NMR (100 MHz) $\delta 0.691(3 \mathrm{H}$, $\left.\mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.956\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}\right), 0.978(6 \mathrm{H}, \mathrm{d}$, $21-\mathrm{CH}_{3}$ and $\left.27-\mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}\right), 1.011\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.60(1$ H , d of septets, $J=6.8$ and 9.0 Hz$), 3.34-3.76(1 \mathrm{H}, \mathrm{m} 3 \alpha-\mathrm{H}), 4.55$ $(1 \mathrm{H}, \mathrm{dd}, 22-\mathrm{H}, J=4.4$ and 7.0 Hz$), 5.23(1 \mathrm{H}, \mathrm{dd}, 24-\mathrm{H}, J=8.9$ and 11.1 Hz$), 5.38(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{dd}, 23-\mathrm{H}, J=7.2$ and 11.2 Hz); mass spectrum (MAT-711) $\mathrm{m} / \mathrm{z} 400.3339\left(\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{2}, 6 \%\right.$, $\left.\mathrm{M}^{+}\right), 302.2618\left(\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}, 63, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $1 \mathrm{H})$), $301.2536\left(\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}, 25, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $)$), 284.2490 $\left(\mathrm{C}_{21} \mathrm{H}_{32}, 48, \mathrm{M}-\left(\mathrm{C}(20)-\mathrm{C}(22)\right.\right.$ fission $\left.-1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}\right)$), 283.2427 $\left(\mathrm{C}_{21} \mathrm{H}_{31}, 62, \mathrm{M}-\left(\mathrm{C}(20)-\mathrm{C}(22)\right.\right.$ fission $\left.\left.+\mathrm{H}_{2} \mathrm{O}\right)\right), 271.2062\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}\right.$, $10, \mathrm{M}-($ side chain $+2 \mathrm{H})$), $269.2248\left(\mathrm{C}_{20} \mathrm{H}_{29}, 11, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $\left.-1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right)$), $241.1947\left(\mathrm{C}_{18} \mathrm{H}_{25}, 11, \mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{2}\right)$, $227.1804\left(\mathrm{C}_{17} \mathrm{H}_{23}, 11, \mathrm{M}-\right.$ (side chain $+\left(\mathrm{C}(16)-\mathrm{C}(17)\right.$ unit) $+\mathrm{H}_{2} \mathrm{O}$ $+1 \mathrm{H})$), $217.1966\left(\mathrm{C}_{16} \mathrm{H}_{25}, 11, \mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2}\right), 215.1796\left(\mathrm{C}_{16} \mathrm{H}_{23}\right.$, $18, \mathrm{M}-$ (ring D fission $\left.-1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}\right)$), $213.1633\left(\mathrm{C}_{16} \mathrm{H}_{21}, 30, \mathrm{M}\right.$ - (ring D fission $\left.+1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}\right)$), $81.0771\left(\mathrm{C}_{6} \mathrm{H}_{9}, 100\right)$.
(22S)-Cholest-5-ene-3 $\beta, 22$-diol (29). Conversion of alcohol 33 to 29 was accomplished as described above for the conversion of 22 to $29: 4^{46} \mathrm{mp} 179-181^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}{ }^{20}-54^{\circ}(c 0.45)$; the NMR spectrum and mass spectrum were identical with those of 29 prepared from 22 . Diol 29 was converted to the diacetate as before: $\mathrm{mp} 144-146^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}{ }^{20}-57^{\circ}$ (c 0.25); the NMR spectrum was identical with that obtained for the diacetate derived from 22.

Methyl (22E,24S)-6 β-Methoxy-3 α,5-cyclo- 5α-stigmast-22-en-29-oate (23). The E allylic alcohol 22 ($100 \mathrm{mg}, 0.241 \mathrm{mmol}$), trimethyl orthoacetate ($0.31 \mathrm{~mL}, 290 \mathrm{mg}, 2.4 \mathrm{mmol}$), and $2 \mu \mathrm{~L}$ of propionic acid were heated in refluxing xylenes $(0.5 \mathrm{~mL})$ for 3 h , when the reaction was shown to be complete by GLC and TLC. ${ }^{26,27}$ The reaction mixture was cooled and then concentrated under vacuum. The oily residue was purified by preparative TLC ($20 \% \mathrm{EtOAc} /$ hexane) to give the noncrystalline ester 23: 70 mg , 62%; NMR (360 MHz) $\delta 0.43(1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=-5$ and 8 Hz$)$, $0.65(1 \mathrm{H}, \mathrm{t}, 4 \beta-\mathrm{H}, J=5 \mathrm{~Hz}), 0.718\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.838(3 \mathrm{H}$, $\left.\mathrm{d}, 26-\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 0.876\left(3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 0.966$ $\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right), 1.020\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 1.88(1 \mathrm{H}$, $\mathrm{dt}, 7-\mathrm{H}, J=3.0$ and 13 Hz$), 1.95(1 \mathrm{H}, \mathrm{dt}, 7-\mathrm{H}, J=3.5$ and 13 $\mathrm{Hz}), 1.96-2.08(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.16-2.31(2 \mathrm{H}, \mathrm{m}, 24-\mathrm{H}$ and $28-\mathrm{H})$, $2.42(1 \mathrm{H}, \mathrm{dd}, 28-\mathrm{H}, J=3.5$ and 12.5 Hz$), 2.77(1 \mathrm{H}, \mathrm{m}, 6 \alpha-\mathrm{H}$, $w_{1 / 2}$ ca. 7 Hz), $3.322\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}\right), 3.622\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $5.12(1 \mathrm{H}, \mathrm{dd}, 22-\mathrm{H}, J=7.5$ and 15 Hz$), 5.23(1 \mathrm{H}, \mathrm{dd}, 23-\mathrm{H}, J$ $=9$ and 15 Hz); IR $1750,970 \mathrm{~cm}^{-1}$.

Methyl (22E,24S)-3 β-Hydroxystigmasta-5,22-dien-29-oate (40). The iso-methyl ether protecting group in 23 was removed in the usual way to give $40: \mathrm{mp} 120-121^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right) ; \mathrm{NMR}$ $(100 \mathrm{MHz}) \delta 0.683\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.834\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=\right.$ $6.7 \mathrm{~Hz}), 0.872\left(3 \mathrm{H}, \mathrm{d}, 27 \cdot \mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}\right), 0.972\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}\right.$, $J=6.7 \mathrm{~Hz}), 1.005\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 3.30-3.65(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 3.618$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.05-5.40(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 22-\mathrm{H}$, and $23-\mathrm{H})$; mass spectrum (MAT-711) $m / z 456.3591\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}, 100 \%, \mathrm{M}^{+}\right.$), $441.3345\left(\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}, 14, \mathrm{M}-\mathrm{CH}_{3}\right), 438.3483\left(\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{2}, 33, \mathrm{M}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right), 423.3232\left(\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{2}, 12, \mathrm{M}-\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right)\right), 314.2625$ $\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}, 22\right), 301.2518\left(\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}, 12, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $)$), $300.2428\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}, 14, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $+1 \mathrm{H})$), 299.2364 $\left(\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}, 49\right), 283.2425\left(\mathrm{C}_{21} \mathrm{H}_{31}, 25, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission + $\left.\mathrm{H}_{2} \mathrm{O}\right)$), $272.2122\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}, 18, \mathrm{M}\right.$ - (side chain $\left.+1 \mathrm{H}\right)$), 271.2066 $\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}, 60, \mathrm{M}\right.$ - (side chain $\left.+2 \mathrm{H}\right)$), $255.2125\left(\mathrm{C}_{19} \mathrm{H}_{27}, 49, \mathrm{M}\right.$ - (side chain $+\mathrm{H}_{2} \mathrm{O}$)), $213.1645\left(\mathrm{C}_{16} \mathrm{H}_{21}, 25, \mathrm{M}-\right.$ (ring D fission $\left.+1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}\right)$).

Methyl (22E,24R)-6 β-Methoxy-3 $\alpha, 5$-cyclo- 5α-stigmast-22-en-29-oate (46). The Z allylic alcohol 33 ($125 \mathrm{mg}, 0.301 \mathrm{mmol}$) was treated with trimethyl orthoacetate $(0.38 \mathrm{~mL}, 360 \mathrm{mg}, 3.0$ mmol) and propionic acid ($3 \mu \mathrm{~L}$) in xylenes $(0.75 \mathrm{~mL})$ as described above for the preparation of 23 . After purification by preparative

TLC, $99 \mathrm{mg}(70 \%)$ of the oily ester was obtained: NMR (360 $\mathrm{MHz}) \delta 0.42(1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=-5$ and 8 Hz$), 0.65(1 \mathrm{H}, \mathrm{t}, 4 \beta-\mathrm{H}$, $J=5 \mathrm{~Hz}), 0.712\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.830\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.8\right.$ $\mathrm{Hz}), 0.871\left(3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right), 0.994\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}\right.$, $J=6.6 \mathrm{~Hz}), 1.019\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 1.88(1 \mathrm{H}, \mathrm{dt}, 7 \cdot \mathrm{H}, J=3$ and $13 \mathrm{~Hz}), 1.95(1 \mathrm{H}, \mathrm{dt}, 7-\mathrm{H}, J=3.5$ and 13 Hz$), 1.97-2.08(1 \mathrm{H}$, $\mathrm{m}, 20-\mathrm{H}), 2.18-2.35(2 \mathrm{H}, \mathrm{m}, 24-\mathrm{H}$ and $28-\mathrm{H}), 2.40(1 \mathrm{H}, \mathrm{dd}, 28-\mathrm{H}$, $J=3.5$ and 12.5 Hz), $2.77\left(1 \mathrm{H}, \mathrm{m}, 6 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .7 \mathrm{~Hz}\right), 3.322$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCH}\right), 3.622\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.12(1 \mathrm{H}, \mathrm{dd}, 22-\mathrm{H}$, $J=7.5$ and 15 Hz), $5.27(1 \mathrm{H}, \mathrm{dd}, 23-\mathrm{H}, J=9$ and 15 Hz); IR $1750,970 \mathrm{~cm}^{-1}$.

Methyl (22E,24R)-3 β-Hydroxystigmasta-5,22-dien-29-oate (47). Regeneration of the 3β-hydroxy- Δ^{5} system in 46 in the usual way gave 47: mp 141.5-143 ${ }^{\circ} \mathrm{C}$ (acetone $/ \mathrm{H}_{2} \mathrm{O}$); NMR (100 MHz) $\delta 0.678\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.830\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}\right), 0.870$ $\left(3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}\right), 1.000\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right)$, $1.006\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 3.3-3.7(1 \mathrm{H}$, br m, $3 \alpha-\mathrm{H}$), $3.622(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 5.08-5.42(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 22-\mathrm{H}$, and $23-\mathrm{H})$; mass spectrum (MAT-711) m/z $456.3584\left(\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}, 58, \mathrm{M}^{+}\right)$, $441.3394\left(\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}\right.$, $\left.10, \mathrm{M}-\mathrm{CH}_{3}\right), 438.3537\left(\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{2}, 20, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 423.3264$ $\left(\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{2}, 14, \mathrm{M}-\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right)\right.$), $314.2629\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}, 14\right), 300.2430$ $\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}, 10, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $+1 \mathrm{H})$), $299.2367\left(\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}\right.$, $38), 283.2429\left(\mathrm{C}_{21} \mathrm{H}_{31}, 18, \mathrm{M}-\left(\mathrm{C}(20)-\mathrm{C}(22)\right.\right.$ fission $\left.+\mathrm{H}_{2} \mathrm{O}\right)$), $272.2120\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}, 17, \mathrm{M}\right.$ - (side chain $\left.+1 \mathrm{H}\right)$), $271.2054\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}\right.$, $41, \mathrm{M}$ - (side chain + 2 H)), $255.2114\left(\mathrm{C}_{19} \mathrm{H}_{27}, 34, \mathrm{M}\right.$ - (side chain $\left.+\mathrm{H}_{2} \mathrm{O}\right)$), 253.197) $\left(\mathrm{C}_{19} \mathrm{H}_{25}, 13, \mathrm{M}-\left(\right.\right.$ side chain $+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}$)), $213.1683\left(\mathrm{C}_{16} \mathrm{H}_{21}, 23, \mathrm{M}-\right.$ (ring D fission $+1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}$), 81.0707 ($\mathrm{C}_{6} \mathrm{H}_{9}, 100$).
(22E,24S)-6 β-Methoxy-3 $\alpha, 5$-cyclo-5 α-stigmast-22-en-29-ol (41). Ester 23 ($30 \mathrm{mg}, 0.064 \mathrm{mmol}$) was reduced with $\mathrm{LiAlH}_{4}(50$ $\mathrm{mg}, 1.3 \mathrm{mmol})$ in ether $(10 \mathrm{~mL})$. After 1 h of refluxing, the reaction was worked up in the usual way. Purification by high-pressure liquid chromatography gave $23 \mathrm{mg}(82 \%)$ of the oily alcohol 41: NMR (100 MHz) $\delta 0.42(1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=-5$ and 8 Hz$), 0.64$ $(1 \mathrm{H}, \mathrm{t}, 4 \beta-\mathrm{H}, J=5 \mathrm{~Hz}), 0.733\left(3 \mathrm{H}, \mathrm{s}, 18 \mathrm{CH}_{3}\right), 0.828(3 \mathrm{H}, \mathrm{d}$, $26-\mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}$), $0.869\left(3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}\right.$), 1.010 $\left(3 \mathrm{H}, \mathrm{d}, 21 \mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}\right), 1.023\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.76(1 \mathrm{H}$, $\mathrm{m}, 6 \alpha-\mathrm{H}, w_{1 / 2}$ ca. 5 Hz$), 3.319\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.62(2 \mathrm{H}$, br t, $29-\mathrm{H}$, $J=6.5 \mathrm{~Hz}), 5.16(2 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}$ and $23-\mathrm{H})$.
($22 E, 24 S$)-Stigmasta-5,22-diene-38,29-diol (42). Cleavage of the iso-methyl ether moiety of 41 gave the diol 42: mp 178-179 ${ }^{\circ} \mathrm{C}$ (acetone); NMR (100 MHz) $\delta 0.699\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.826$ (3 $\left.\mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right), 0.868\left(3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}\right.$), $1.010\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 1.018\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}\right), 3.3-3.8$ (3 H , br m, $3 \alpha-\mathrm{H}$ and $29-\mathrm{H}$), $4.96-5.42(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 22-\mathrm{H}$, and $23-\mathrm{H}$); mass spectrum (MAT-711) m/z $428.3681\left(\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{2}, 100 \%\right.$, $\left.\mathrm{M}^{+}\right), 413.3397\left(\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{O}_{2}, 11, \mathrm{M}-\mathrm{CH}_{3}\right), 410.3536\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}, 46\right.$, $\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 314.2616\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}, 22\right), 301.2528\left(\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}, 12\right.$, M ($\mathrm{C}(20)-\mathrm{C}(22)$ fission $)$), $299.2379\left(\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}, 45, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $+2 \mathrm{H})$), $283.2413\left(\mathrm{C}_{21} \mathrm{H}_{31}, 18, \mathrm{M}-(\mathrm{C}(20)-\mathrm{C}(22)\right.$ fission $\left.+\mathrm{H}_{2} \mathrm{O}\right)$), $272.2119\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}, 32, \mathrm{M}\right.$ - (side chain + 1 H)), 271.2064 $\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}, 58, \mathrm{M}\right.$ - (side chain $\left.+2 \mathrm{H}\right)$), $258.1987\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}, 13\right)$, $255.2104\left(\mathrm{C}_{19} \mathrm{H}_{27}, 4.7, \mathrm{M}-\right.$ (side chain $\left.+\mathrm{H}_{2} \mathrm{O}\right)$), $229.1960\left(\mathrm{C}_{17} \mathrm{H}_{25}\right.$, 16), $213.1668\left(\mathrm{C}_{16} \mathrm{H}_{21}, 26, \mathrm{M}-\right.$ (ring D fission $+1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}$)).
($22 E, 24 R$)-6 β-Methoxy-3 α, 5 -cyclo- 5α-stigmast-22-en-29-ol (48). Reduction of ester $46(30 \mathrm{mg}, 0.064 \mathrm{mmol})$ with $\mathrm{LiAlH}_{4}(50$ $\mathrm{mg}, 1.3 \mathrm{mmol}$) in refluxing ether (10 mL) gave, after the usual workup and purification by high-pressure liquid chromatography, $24 \mathrm{mg}(85 \%)$ of the noncrystalline alcohol 48: NMR (100 MHz) $\delta 0.43(1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=-5$ and 8 Hz$), 0.65(1 \mathrm{H}, \mathrm{t}, 4 \beta-\mathrm{H}, J=$ $5 \mathrm{~Hz}), 0.730\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.820\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}\right)$, $0.865\left(3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.4 \mathrm{~Hz}\right), 1.020\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=\right.$ $6.5 \mathrm{~Hz}), 1.022\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.76\left(1 \mathrm{H}, \mathrm{m}, 6 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .6 \mathrm{~Hz}\right)$, $3.319\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.63(2 \mathrm{H}, \mathrm{dt}, 29 \cdot \mathrm{H}, J=2.5$ and 6.5 Hz$)$, $5.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}=\mathrm{CH}, J=7$ and 15 Hz$), 5.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{CH}=\mathrm{CH}$, $J=7.5$ and 15 Hz).
(22E,24R)-Stigmasta-5,22-diene-38,29-diol (49). Reaction of 48 with p-TsOH in hot aqueous dioxane gave the crystalline diol 49: mp 188.5-190.0 ${ }^{\circ} \mathrm{C}$ (acetone); NMR (100 MHz) $\delta 0.695$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 0.820\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}\right), 0.866(3 \mathrm{H}$, $\mathrm{d}, 27-\mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}$), $1.009\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 1.027(3 \mathrm{H}, \mathrm{d}$, $21-\mathrm{CH}_{3}, J=6.4 \mathrm{~Hz}$), $3.25-3.80(3 \mathrm{H}$, br m, $29-\mathrm{H}$ and $3 \alpha-\mathrm{H}$), $5.05-5.45(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 22-\mathrm{H}$, and $23-\mathrm{H})$; mass spectrum (MAT-711) m/z $428.3648\left(\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{2}, 49 \%, \mathrm{M}^{+}\right), 410.3518\left(\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}\right.$, $\left.30, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 314.2615\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}, 14\right), 299.2369\left(\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}, 44, \mathrm{M}\right.$ $-(\mathrm{C}(20)-\mathrm{C}(22)$ fission $+2 \mathrm{H})$), $283.2412\left(\mathrm{C}_{21} \mathrm{H}_{31}, 13, \mathrm{M}-(\mathrm{C}-\right.$
(20)-C(22) fission $\left.+\mathrm{H}_{2} \mathrm{O}\right)$), $272.2135\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}, 17, \mathrm{M}-\right.$ (side chain $+1 \mathrm{H})$), $271.2058\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}, 40, \mathrm{M}\right.$ - (side chain +2 H)), 258.1982 $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}, 12\right), 255.2099\left(\mathrm{C}_{19} \mathrm{H}_{27}, 27, \mathrm{M}\right.$ - (side chain $\left.+\mathrm{H}_{2} \mathrm{O}\right)$), $253.1947\left(\mathrm{C}_{19} \mathrm{H}_{25}, \mathrm{M}-\right.$ (side chain $\left.+2 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}\right)$), $229.1934\left(\mathrm{C}_{17} \mathrm{H}_{25}\right.$, 12), $215.1816\left(\mathrm{C}_{16} \mathrm{H}_{23}, 12, \mathrm{M}\right.$ - (ring D fission - $\left.1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}\right)$), $213.1656\left(\mathrm{C}_{16} \mathrm{H}_{21}, 25, \mathrm{M}-\left(\right.\right.$ ring D fission $\left.+1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}\right)$), 211.1501 $\left(\mathrm{C}_{16} \mathrm{H}_{19}, 13\right), 81.0707\left(\mathrm{C}_{6} \mathrm{H}_{9}, 100\right)$.
($22 E, 24 S$)-6 β-Methoxy- $3 \alpha, 5$-cyclo- α-stigmast-22-ene (10). To a stirred solution of alcohol $41(18.0 \mathrm{mg}, 0.0406 \mathrm{mmol})$ and triethylamine ($25 \mu \mathrm{~L}, 18 \mathrm{mg}, 0.18 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and under N_{2} was added methanesulfonyl chloride ($10 \mu \mathrm{~L}$, $15 \mathrm{mg}, 0.13 \mathrm{mmol}) .{ }^{39}$ Stirring was continued for 30 min at $0^{\circ} \mathrm{C}$, after which the reaction was shown to complete by TLC. The solvent and excess reactants were removed at reduced pressure. THF (3 mL) and $\mathrm{LiAlH}_{4}(100 \mathrm{mg}$) were added to the crude mesylate, and the mixture was stirred for 2 h at room temperature. After the usual workup, 17.0 mg (98%) of 10 was obtained ($>99 \%$ pure by GLC): NMR (100 MHz) $\delta 0.42(1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=-5$ and 8 Hz), $0.65(1 \mathrm{H}, \mathrm{t}, 4 \beta-\mathrm{H}, J=4 \mathrm{~Hz}), 0.733\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right)$, $0.75-0.90\left(9 \mathrm{H}, \mathrm{m}, 26-\mathrm{CH}_{3}, 27-\mathrm{CH}_{3}\right.$, and $\left.29-\mathrm{CH}_{3}\right), 1.014(3 \mathrm{H}, \mathrm{d}$, $\left.21 \cdot \mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}\right), 1.024\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.78(1 \mathrm{H}, \mathrm{m}, 6 \alpha-\mathrm{H}$, $\left.w_{1 / 2} \mathrm{ca} .6 \mathrm{~Hz}\right), 3.319\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.10(2 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}$ and $23-\mathrm{H})$. An authentic sample of 10 prepared ${ }^{23,24}$ from ($22 E, 24 S$)-stig-masta-5,22-dien-3 3 -ol (9) had the following NMR spectrum: NMR $(100 \mathrm{MHz}) \delta 0.42(1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=-5.0$ and 8.0 Hz$), 0.64(1$ $\mathrm{H}, \mathrm{dd}, 4 \beta-\mathrm{H}, J=3.8$ and -5.0 Hz), $0.735\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.75-0.90$ ($9 \mathrm{H}, \mathrm{m}, 26-\mathrm{CH}_{3}, 27-\mathrm{CH}_{3}$, and $29-\mathrm{CH}_{3}$), 1.014 ($3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J$ $=6.5 \mathrm{~Hz}), 1.025\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.78\left(1 \mathrm{H}, \mathrm{m}, 6 \alpha-\mathrm{H}, w_{1 / 2}\right.$ ca. 6 $\mathrm{Hz}), 3.319\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.10(2 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}$ and $23-\mathrm{H})$. The region 0.79-0.84 ppm shows a much better resolution of peaks for 10, both "synthetic" and "authentic", than for the $24 R$-epimer 50. A similar difference has been noted ${ }^{47}$ for the 3β-hydroxy- Δ^{5} compounds 9 and 51 . The spectra of synthetic and authentic 10 are identical in this region and very much different from that of 50 in this region.
(22E,24R)-6 β-Methoxy-3 $\alpha, 5$-cyclo- 5α-stigmast-22-ene (50). Alcohol 48 ($18.0 \mathrm{mg}, 0.0406 \mathrm{mmol}$) was converted to 50 in 97% yield as described above for the preparation of 10 from 41: NMR $(100 \mathrm{MHz}) \delta 0.42(1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=-5$ and 8 Hz$), 0.64(1 \mathrm{H}$, $\mathrm{t}, 4 \beta-\mathrm{H}, J \approx 5 \mathrm{~Hz}), 0.734\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.75-0.90(9 \mathrm{H}, \mathrm{m}$, $26-\mathrm{CH}_{3}, 27-\mathrm{CH}_{3}$, and $29-\mathrm{CH}_{3}$), $1.016\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right.$), $1.024\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.78\left(1 \mathrm{H}, \mathrm{m}, 6 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .6 \mathrm{~Hz}\right), 3.319$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.11(2 \mathrm{H}, \mathrm{m}, 22-\mathrm{H}$ and $23-\mathrm{H})$. The region $0.79-0.84$ ppm is a broadened singlet which is much different from the same region of 10 .
($22 E, 24 S$)-Stigmasta-5,22-dien-3 β-ol (9). Reaction of synthetic 10 ($16 \mathrm{mg}, 0.037 \mathrm{mmol}$) with p - TsOH in refluxing aqueous dioxane gave 9: $14.5 \mathrm{mg}, 95 \%$; mp $169-170^{\circ} \mathrm{C}(\mathrm{MeOH})$ (lit. $.^{77} \mathrm{mp} 169-170^{\circ} \mathrm{C}$).
(22E,24S)-Stigmasta-5,22-dien-3 β-yl Acetate (43). Acetylation of 9 with acetic anhydride in pyridine gave the acetate 43: $\mathrm{mp} 144-145{ }^{\circ} \mathrm{C}(\mathrm{MeOH})$ (lit. ${ }^{48} \mathrm{mp} 144^{\circ} \mathrm{C}$); NMR (360 MHz) $\delta 0.696\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.795\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}\right), 0.804$ $\left(3 \mathrm{H}, \mathrm{t}, 29-\mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 0.846\left(3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.2 \mathrm{~Hz}\right.$), $1.021\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 1.021\left(3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=6.4 \mathrm{~Hz}\right), 2.032$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 2.31(2 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}, J=8 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}$, $w_{1 / 2}$ ca. 17 Hz), $5.01(1 \mathrm{H}, \mathrm{dd}, 22-\mathrm{H}$ or $23-\mathrm{H}, J=9$ and 15 Hz), $5.15(1 \mathrm{H}, \mathrm{dd}, 23-\mathrm{H}$ or $22-\mathrm{H}, J=9$ and 15 Hz$), 5.37(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$, $w_{1 / 2} \mathrm{ca} .10 \mathrm{~Hz}$). An authentic sample of 43 prepared from natural 9 had a $360-\mathrm{MHz}$ NMR spectrum completely identical with that for synthetic 43 and much different from that of 52 in the methyl region.
($22 E, 24 R$)-Stigmasta-5,22-dien-3 β-ol (51). Regeneration of the 3β-hydroxy- Δ^{5} system in 50 gave 51 in 93% yield; mp $156-157.5^{\circ} \mathrm{C}(\mathrm{MeOH})\left(\mathrm{lit} .{ }^{48} \mathrm{mp} 156{ }^{\circ} \mathrm{C}\right)$.
($22 E, 24 R$)-Stigmasta-5,22-dien- 3β-yl Acetate (52). Poriferasterol (51) was acetylated with acetic anhydride in pyridine to give the acetate $52: \mathrm{mp} 146-147.5^{\circ} \mathrm{C}(\mathrm{MeOH})$ (lit. ${ }^{48} \mathrm{mp} 147$ ${ }^{\circ} \mathrm{C}$); NMR (360 MHz) $\delta 0.695\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.791(3 \mathrm{H}, \mathrm{d}$, $26-\mathrm{CH}_{3}, J=6.3 \mathrm{~Hz}$), $0.811\left(3 \mathrm{H}, \mathrm{t}, 29-\mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}\right.$), 0.844 (3 $\left.\mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}\right), 1.021\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 1.024(3 \mathrm{H}, \mathrm{d}$, $21-\mathrm{CH}_{3}, J=6.3 \mathrm{~Hz}$), $2.032\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 2.32(2 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}$,
(47) M. J. Thompson, S. R. Dutky, G. W. Patterson, and E. L. Gooden, Phytochemistry, 11 , 1781 (1972).
(48) W. Bergmann, Comp. Biochem., 3, 115 (1962).
$J=8 \mathrm{~Hz}), 4.61\left(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .17 \mathrm{~Hz}\right), 5.02(1 \mathrm{H}, \mathrm{dd}, 22-\mathrm{H}$ or $23-\mathrm{H}, J=9$ and 15 Hz$), 5.16(1 \mathrm{H}, \mathrm{dd}, 23-\mathrm{H}$ or $22-\mathrm{H}, J=9$ and 15 Hz$), 5.37\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, w_{1 / 2} \mathrm{ca} .10 \mathrm{~Hz}\right)$.
(24R)-Stigmast-5-en-3 $\mathbf{- 0 l}$ (44). Hydrogenation of 10 (8.0 $\mathrm{mg}, 0.019 \mathrm{mmol}$) over PtO_{2} in ethyl acetate followed by cleavage of the iso-methyl ether functionality gave the crystalline β-sitosterol (44): $7.1 \mathrm{mg}, 90 \%$; mp $137-138.5^{\circ} \mathrm{C}(\mathrm{MeOH})\left(\right.$ lit. ${ }^{49} \mathrm{mp}$ $137-138^{\circ} \mathrm{C}$).
(24R)-Stigmast-5-en-3 β-yl Acetate (45). Acetylation of 44 with acetic anhydride in pyridine gave the acetate 45 : mp $121.5-122.5^{\circ} \mathrm{C}(\mathrm{MeOH})$ (lit. ${ }^{49} \mathrm{mp} 120.5-121.5^{\circ} \mathrm{C}$); NMR (100 $\mathrm{MHz}) \delta 0.680\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.814\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}\right)$, $0.834\left(3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 0.848(3 \mathrm{H}, \mathrm{t}$ (center and right leg overlap with $26-\mathrm{CH}_{3}$ doublet), $\left.J=6.5 \mathrm{~Hz}\right), 0.920(3 \mathrm{H}, \mathrm{d}$, $21-\mathrm{CH}_{3}, J=5.8 \mathrm{~Hz}$), 1.018 ($3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}$), $2.024\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right.$), 4.4-4.8 ($1 \mathrm{H}, \mathrm{br} \mathrm{m}, 3 \alpha-\mathrm{H}$), $5.38\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, w_{1 / 2} \mathrm{ca} .9 \mathrm{~Hz}\right.$).
(24S)-Stigmast-5-en-38-ol (54). The iso-methyl ether 50 (8.0 $\mathrm{mg}, 0.019 \mathrm{mmol}$) was hydrogenated over PtO_{2} in ethyl acetate and then cleaved with p-TsOH in aqueous dioxane to give clionasterol (54): $\mathrm{mp} 139-140^{\circ} \mathrm{C}(\mathrm{MeOH})$ (lit. ${ }^{50} \mathrm{mp} 139.5-140^{\circ} \mathrm{C}$).
(24S)-Stigmast-5-en-3 β-yl Acetate (55). Clionasterol (54) was acetylated in the usual way to give the 3β-acetate 55 : mp $142-142.5^{\circ} \mathrm{C}(\mathrm{MeOH})$ (lit. ${ }^{50} \mathrm{mp} 140-141^{\circ} \mathrm{C}$); NMR (100 MHz) $\delta 0.679\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.813\left(3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 0.830$ ($3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.7 \mathrm{~Hz}$), 0.847 ($3 \mathrm{H}, \mathrm{t}$ (center and right leg overlag with $26-\mathrm{CH}_{3}$ doublet), $29-\mathrm{CH}_{3}, J=6.6 \mathrm{~Hz}$), $0.925(3 \mathrm{H}$, $\left.\mathrm{d}, 21-\mathrm{CH}_{3}, J=5.8 \mathrm{~Hz}\right), 1.019\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 2.024(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{CO}_{2}$), 4.4-4.8 (1 H, br m, $3 \alpha-\mathrm{H}$), $5.38\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, w_{1 / 2}\right.$ ca. 8 Hz).
(24S)-Stigmast-5-ene-3 3,29 -diol (24). Hydrogenation of alcohol 41 ($22 \mathrm{mg}, 0.050 \mathrm{mmol}$) over PtO_{2} in ethyl acetate followed by regeneration of the 3β-hydroxy- Δ^{5} system with p - TsOH in aqueous dioxane gave the desired diol 24: $\mathrm{mp} 175.5-176.5^{\circ} \mathrm{C}$ (acetone); NMR (360 MHz) $\delta 0.678\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}\right), 0.842(3 \mathrm{H}$, d, $\left.26-\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 0.850\left(3 \mathrm{H}, \mathrm{d}, 27-\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}\right), 0.921$ ($3 \mathrm{H}, \mathrm{d}, 21-\mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}$), $1.008\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{CH}_{3}\right), 1.68(1 \mathrm{H}$, $\mathrm{m}, 24-\mathrm{H}), 1.77-1.89(3 \mathrm{H}, \mathrm{m}, 28-\mathrm{H}+$?), 1.93-2.05 ($2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$) $2.23(1 \mathrm{H}, \mathrm{t}, 4 \beta \cdot \mathrm{H}, J \approx 13 \mathrm{~Hz}), 2.30(1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=6$ and 13 Hz), 3.53 ($1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}, w_{1 / 2} \mathrm{ca} .26 \mathrm{~Hz}$), $3.65(2 \mathrm{H}, \mathrm{m}, 29-\mathrm{H}$, $w_{1 / 2}$ ca. 17 Hz), $5.35\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, w_{1 / 2} \mathrm{ca} .10 \mathrm{~Hz}\right)$; ${ }^{13} \mathrm{C}$ NMR 37.28 (C-1), 31.68 (C-2), 71.70 (C-3), 42.30 (C-4), 140.59 (C-5), 121.44 (C-6), 31.94 (C-7), 31.94 (C-8), 50.13 (C-9), 36.49 (C-10), 21.12 (C-11), 39.79 (C-12), 42.30 (C-13), 56.72 (C-14), 24.31 (C-15), 28.27 (C-16), 56.02 (C-17), 11.92 (C-18), 19.39 (C-19), 36.11 (C-20), 18.83 (C-21), 33.96 (C-22), 27.10 (C-23), 40.84 (C-24), 29.85 (C-25), 19.10 and 19.28 ($\mathrm{C}-26$ and $\mathrm{C}-27$), 34.15 (C-28), 61.96 ($\mathrm{C}-29$); mass spectrum (MAT-711) m/z $430.3814\left(\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{2}, 100 \%, \mathrm{M}^{+}\right)$, $415.3570\left(\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{2}, 21, \mathrm{M}-\mathrm{CH}_{3}\right), 412.3677\left(\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}, 54, \mathrm{M}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right), 397.3469\left(\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{O}, 13, \mathrm{M}-\left(\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}\right)\right.$), 345.3158 $\left(\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}, 17, \mathrm{M}\right.$ - (complex ring A and B fission) ${ }^{51}$), 319.2996 $\left(\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}, 25, \mathrm{M}-(\text { complex ring A and B fission })^{51}\right), 273.2222$ $\left(\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}, 15, \mathrm{M}\right.$ - (side chain)), $55.2105\left(\mathrm{C}_{19} \mathrm{H}_{27}, 18, \mathrm{M}\right.$ - (side

[^7]chain $\left.+\mathrm{H}_{2} \mathrm{O}\right)$), $213.1658\left(\mathrm{C}_{18} \mathrm{H}_{21}, 19, \mathrm{M}-(\right.$ ring D fission $+1 \mathrm{H}$ $\left.+\mathrm{H}_{2} \mathrm{O}\right)$).

Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{2}: \mathrm{C}, 80.87 ; \mathrm{H}, 11.70$. Found: C, 80.53; H, 11.48.
(24R)-Stigmast-5-ene-38,29-diol (53). Alcohol 48 (23 mg , 0.052 mmol) was hydrogenated over PtO_{2} in ethyl acetate and reacted with $p-\mathrm{TsOH}$ in hot aqueous dioxane to give the diol 53 $20 \mathrm{mg}, 89 \%$; mp $174-175^{\circ} \mathrm{C}$ (acetone); NMR (360 MHz) $\delta 0.677$ ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{CH}_{3}$), 0.826 ($3 \mathrm{H}, \mathrm{d}, 26-\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}$), 0.858 (3 H $\mathrm{s}, 27-\mathrm{CH}_{3}, J=6.9 \mathrm{~Hz}$), $0.923\left(3 \mathrm{H}, \mathrm{s}, 21-\mathrm{CH}_{3}, J=6.5 \mathrm{~Hz}\right.$), 1.009 ($3 \mathrm{H}, \mathrm{s}, 19 \mathrm{CH}_{3}$), $1.71(1 \mathrm{H}, \mathrm{m}, 24-\mathrm{H}), 1.77-1.89(3 \mathrm{H}, \mathrm{m}, 28-\mathrm{H}+$?), $1.93-2.05(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.23(1 \mathrm{H}, \mathrm{t}, 4 \beta-\mathrm{H}, J \approx 13 \mathrm{~Hz}$), 2.30 ($1 \mathrm{H}, \mathrm{dd}, 4 \alpha-\mathrm{H}, J=6$ and 13 Hz), $3.53\left(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}, w_{1 / 2}\right.$ ca. $24 \mathrm{~Hz}), 3.66\left(2 \mathrm{H}, \mathrm{m}, 29-\mathrm{H}, w_{1 / 2}\right.$ ca. 31 Hz$), 5.35(1 \mathrm{H}, \mathrm{m}, 6 \cdot \mathrm{H}$, $w_{1 / 2} \mathrm{ca} .10 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 37.28$ (C-1), 31.69 (C-2), 71.71 (C-3), 42.31 (C-4), 140.58 (C-5), 121.44 (C-6), 31.94 (C-7), 31.94 (C-8), 50.14 (C-9), 36.49 (C-10), 21.12 (C-11), 39.80 (C-12), 42.31 (C-13), 56.73 (C-14), 24.32 (C-15), 28.26 (C-16), 56.03 (C-17), 11.92 (C-18) 19.40 (C-19), 36.20 (C-20), 18.85 (C-21), 33.92 (C-22), 27.39 (C-23), 40.75 (C-24), 29.33 (C-25), 18.50 and 19.66 (C-26 and C-27), 33.84 (C-28), 62.03 (C-29); mass spectrum (MAT-711) m/z 430.3805 $\left(\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{2}, 100 \%, \mathrm{M}^{+}\right), 415.3612\left(\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{2}, 18, \mathrm{M}-\mathrm{CH}_{3}\right), 412.3705$ $\left(\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}, 54, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 397.3491\left(\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{O}, 15, \mathrm{M}-\left(\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}\right)\right.$), $345.3150\left(\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{O}, 20, \mathrm{M}\right.$ - (complex ring A and B fission) ${ }^{51}$), $319.2990\left(\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}, 27, \mathrm{M}\right.$ - (complex ring A and B fission) ${ }^{51}$), $273.2210\left(\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}, 16, \mathrm{M}\right.$ - (side chain)), 255.2130 ($\mathrm{C}_{19} \mathrm{H}_{27}, 18$, M - (side chain $+\mathrm{H}_{2} \mathrm{O}$), $213.1643\left(\mathrm{C}_{16} \mathrm{H}_{21}, 25, \mathrm{M}-\right.$ (ring D fission $\left.+1 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}\right)$).

Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{2}$: C, 80.87; H, 11.70. Found: C, 80.55; H, 11.50.

Acknowledgment. The authors gratefully acknowledge financial support from the National Institutes of Health (Grant No. GM-06840). In addition we are grateful for the use of the $360-\mathrm{MHz}$ NMR spectrometer at the Stanford Magnetic Resonance Laboratory supported by NSF Grant No. GR 23633 and NIH Grant No. RR 00711. We also acknowledge NSF Grant No. GP-28142 and NSF Grant No. CHE 77-08810 for access to the Varian XL-100-15 NMR spectrometer at Stanford. Finally, we thank the Upjohn Company for a generous supply of stigmasterol.

Registry No. 5, 70813-66-0; 9, 83-48-7; 10, 53603-94-4; 11, 25819-77-6; 13, 70813-67-1; 16, 70813-68-2; 17, 70813-69-3; 18, 70832-43-8; 22, 70813-70-6; 23, 70813-71-7; 24, 70832-44-9; 25, 917-57-7; 26, 70813-72-8; 27, 593-66-8; 28, 70813-73-9; 29, 70813-74-0; 29 diacetate, 17955-05-4; 30, 70813-75-1; 31, 70813-76-2; 32, 70813-77-3; 33, 70813-78-4; 34, 70813-79-5; 35, 598-23-2; 36, 274-07-7; 37, 16416-44-7; 38, 16416-41-4; 39, 70813-80-8; 40, 70813-81-9; 41, 70813-82-0; 42, 70813-83-1; 43, 4651-48-3; 44, 83-46-5; 45, 915-05-9; 46, 70832-45-0; 47, 70832-46-1; 48, 70832-47-2; 49, 70832-48-3; 50, 70832-49-4; 51, 481-16-3; 52, 4651-49-4; 53, 70832-50-7; 54, 83-47-6; 55, 915-05-9; 56, 66786-17-2.

Supplementary Material Available: A description of the synthesis of 5 and 16 (Scheme I) and experimental details (5 pages). Ordering information is given on any current masthead page.

[^0]: (15) G. B. Bennett, Synthesis, 589 (1977),
 (16) S. J. Rhoads and N. R. Raulins, Org. React., 22, 1 (1975).
 (17) F. E. Ziegler, Acc. Chem. Res., 10, 227 (1977).
 (18) W. Sucrow and B. Girgensohn, Chem. Ber., 103, 750 (1970).
 (19) W. Sucrow, B. Schubert, W. Richter, and M. Slopianka, Chem. Ber., 104, 3689 (1971).
 (20) W. Sucrow, P. P. Caldeira, and M. Slopianka, Chem. Ber., 106, 2236 (1973).
 (21) W. Sucrow, M. Slopianka, and P. P. Caldeira, Chem. Ber., 108, 1101 (1975).
 (22) W. Sucrow and M. Slopianka, Chem. Ber., 108, 3721 (1975).

[^1]: (28) R. E. Ireland and R. H. Mueller, J. Am. Chem. Soc., 94, 5897 (1972); R. E. Ireland and A. K. Willard, Tetrahedron Lett., 3975 (1975); R. E. Ireland, R. H. Mueller, and A. K. Willard, J. Am. Chem. Soc., 98, 2869 (1976).
 (29) T. C. McMorris, S. R. Schow, and G. R. Weihe, Tetrahedron Lett., 335 (1978).

[^2]: (30) H. C. Brown, T. Hamaoka, and N. Ravindran, J. Am. Chem. Soc., 95, 5786 (1973).
 (31) E. P. Burrows, G. M. Hornby, and E. Caspi, J. Org. Chem., 34, 103 (1969).
 (32) H. C. Brown, T. Hamaoka, and N. Ravindran, J. Am. Chem. Soc., 95, 6456 (1973).

[^3]: (33) R. P. Gregson and R. N. Mirrington, Aust. J. Chem., 29, 2063 (1976).
 (34) H. Neumann and D. Seebach, Tetrahedron Lett., 4839 (1976).

[^4]: (35) H. J. Hansen and H. Schmid, Chem. Br., 5, 111 (1969).
 (36) D. J. Faulkner and M. R. Peterson, J. Am. Chem. Soc., 95, 553 (1973).
 (37) H. J. Hansen and H. Schmid, Tetrahedron, 30, 1959 (1974).
 (38) N. Theobald and C. Djerassi, Tetrahedron Lett., 4369 (1978), and references cited therein.

[^5]: (40) After completion of our work, we were informed by Professor 'T C. McMorris (University of California, San Diego) that he had reached the same stereochemical conclusion on the basis of independent evidence.
 (41) G. W. Patterson, Lipids, 6, 120 (1971).
 (42) L. J. Goad and T. W. Goodwin, Prog. Phytochem., 3, 113 (1972).

[^6]: (46) The hydrogenations of the allylic alcohols were originally done with PtO_{2} as the catalyst; however, when a new batch of PtO_{2} was tried, the hydrogenations could not be repeated. Apparently the new batch was much more active because it led to cleavage of the methoxy and cyclopropane moieties. Use of 5% rhodium on carbon gave fast and clean hydrogenation of the Δ^{23} double bond.

[^7]: (49) I. Nishioka, N. Ikekawa, A. Yagi, T. Kawasaki, and T. Tsukamoto, Chem. Pharm. Bull., 13, 379 (1965).
 (50) E. Bullock and C. J. Dawson, J. Lipid Res., 17, 565 (1976).
 (51) S. G. Wyllie, B. A. Amos, and L. Tökees, J. Org. Chem., 42, 725 (1977).

